• Title/Summary/Keyword: Wave spectra

Search Result 326, Processing Time 0.026 seconds

A study on prediction of whipping effect of very large container ship considering multiple sea states

  • Kim, Beomil;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.387-398
    • /
    • 2020
  • In the design stage of the very large container ships, some methodologies for the whipping effects have been developed, but most of them are based on single sea state. We developed a methodology that considers multiple sea states. Fluid-structure Interaction (FSI) analyses with one dimensional structural model were carried out to capture slamming-induced transient whipping behaviors. Because of the nature of random phases of the applied wave spectra, the required period for entire FSI analyses was determined from the convergence study where the whipping effect became stable. Low pass filtering was applied to the transient whipping responses to obtain the hull girder bending moment processes. Peak counting method for the filtered whipping responses was used to obtain collection of the vertical bending moment peaks. The whipping effect from this new method is compared with that from based on single sea state approach. The efficiency and advantage of the new methodology are presented.

Isomorphous Substitution of Fe in Sodalite and Its Electric Characterization

  • Kim, Chy-Hyung;Jung, Chi-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.215-220
    • /
    • 1993
  • Experiment on isomorphous substitution of Al by Fe in sodalite framework was carried out using dry way method at 800-900$^{\circ}$C in nitrogen atmosphere. The substitution of Fe was possible up to 25 mole% with some deviation of symmetry in sodalite cage. The cubic unit cell parameter increased with increasing Fe content. It showed ionic semiconducting property, especially the highest conductivity and the lowest activation energy in 10 mole% Fe-substituted sodalite which could behave as a superionic conductor at above 400$^{\circ}$C. When more Fe was introduced into sodalite the electronic conductivity was improved at high temperature. But the relative electronic contribution was found to be lower compared with ionic contribution at high temperature. In infrared spectra some major absorption bands of sodalite shifted to lower wave numbers due to heavier Fe atoms substitution in Al lattice sites.

Structural detection of variation in Poisson's ratio: Monitoring system for zigzag double walled carbon nanotubes

  • Hussain, Muzamal;Asghar, Sehar;Ayed, Hamdi;Khadimallah, Mohamed A.;Alshoaibi, Adil;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.345-352
    • /
    • 2022
  • In this paper, natural frequency curves are presented for three specific end supports considering distinct values of nonlocal parameter. The vibrational behavior of zigzag double walled carbon nanotubes is investigated using wave propagation with nonlocal effect. Frequency spectra of zigzag (12, 0) double walled carbon nanotubes have been analyzed with proposed model. Effects of nonlocal parameters have been fully investigated on the natural frequency against against variation of Poisson's ratio. A slow increase in frequencies against variation of Poisson's ratio also indicates insensitivity of it for suggested nonlocal model. Moreover, decrease in frequencies with increase in nonlocal parameter authenticates the applicability of nonlocal Love shell model. Also the frequency curves for C-F are lower throughout the computation than that of C-C curves.

Tunneling Spectra in Organic Cu-Pc/$Bi_2Sr_2CaCu_2O_{8+\delta}$ Tunnel Junctions

  • Kim, Sunmi;E, Jungyoon;Lee, Kiejin;Ishbas, Takayuki;Lee, Yang-San
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • We report the current transport properties of a normal metal/organic conductor/ superconductor tunnel junction as a novel high- $T_{c}$ superconducting three terminal device. The organic copper (II) phthalocyanine (Cu-Pc) layer was used far a polaronic quasiparticle (QP) injector. The injection of polaronic QP from the Cu-Pc interlayer into a superconductor $Bi_2$$Sr_2$$CaCu_2$ $O_{8+}$ $\delta$/(BSCCO) thin film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. The tunneling spectroscopy of an Au/cu-PC/BSCCO junction exhibited a zero bias conductance peak which may be due to Andreev reflection at a Cu-Pc/d-wave superconductor junction.n..

  • PDF

W-type hexaferrite-epoxy composites for wide-band radar absorption (광대역 레이다 흡수용 W-type 육방정 페라이트-에폭시 복합 소재)

  • Su-Mi Lee;Tae-Woo Lee;Young-Min Kang;Hyemin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.42-50
    • /
    • 2023
  • In this study, hexagonal ferrite powder with chemical formula SrZn2-xCoxFe16O27 was synthesized by a solid-state reaction method and its electromagnetic (EM) wave absorption characteristics were evaluated in the frequency range of 0.1-18 GHz with absorber thickness range of 0 - 10 mm. Reflection loss (RL) affecting electromagnetic wave absorption performance was calculated based on the transmission line theory using measured complex permeabilities and permittivities. RL spectra were also directly measured for some samples. They were well matched with calculated results. High-frequency complex permeability characteristics were changed gradually according to the amount of Co substitution (x). The EM wave absorption frequency band could be tuned accordingly. Hexaferrite samples with x = 1.0, 1.25, and 1.5 exhibited remarkable maximum electromagnetic wave absorption performances with minimum RL (RLmin) lowered than -50 dB. They also showed a very broad frequency band (Δf > 10 GHz) in which more than 90% of the EM wave energy absorption occurred (RL ≤ -10 dB).

SPECTROSCOPIC AND CHEMOMETRIC ANALYSIS OF SW-NIR SPECTRA OF SUGARS AND FRUITS

  • Golic, Mirta;Walsh, Kerry;Lawson, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1133-1133
    • /
    • 2001
  • Fruit sweetness, as indexed by total soluble solids (TSS), and fruit acidity are key factors in the description of the fruit eating quality. Our group has been using short wave NIR spectroscopy (SW-NIR; 700-1100 nm) in combination with chemometric methods (PLS and MLR) for the non-invasive determination of the fruit eating quality (1,2). In order to further improve calibration performance, we have investigated SW-NIR spectra of sucrose and D-glucose. In previous reports on the band assignment for these sugars in the 1100-2500 nm spectral region (3-7), it has been established that change in concentration, temperature and physical state of sugars reflects on the shape and position of the spectral bands in the whole NIR region(5-7). The effect of change in concentration and temperature of individual sugar solutions and sugar spiked Juice samples was analysed using combined spectroscopic (derivative, difference, 2D spectroscopy) and linear regression chemometric (PLS, MLR) techniques. The results have been compared with the spectral data of a range of fruit types, varying in TSS content and temperature. In the 800-950 nm spectral region, the B-coefficients for apples, peaches and nectarines resemble those generated in a calibration of pure sucrose in water (Fig. 1). As expected, these fruits exhibit better calibration and prediction results than those in which the B-coefficients were poorly related to those for sugar.(Figure omitted).

  • PDF

Comparison with 1.5Tesla and 3.0Tesla of Acoustic Noise Spectrum of DWI MR Pulse Sequence (1.5Tesla and 3.0Tesla에서 관류 MR의 소리 스펙트럼 분석)

  • Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.491-496
    • /
    • 2018
  • The purpose of this study is to analyze the noise spectra in DWI (diffusion-weighted imaging) pulse sequences of 1.5 Tesla and 3.0 Tesla MRI, The ACR (American College of Radiology) phantom and noise spectrum were analyzed by FFT (fast Fourier transform) and TFFT (temporal frequency analysis) using WavePad sound editor version 8.13 (NCH software, Greenwood Village, CO, USA). Noise spectra, FFT and TFFT were analyzed for laboratory 1.5Tesla and 3.0Tesla DWI MR pulse sequences. The noise threshold of the frequency amplitude in the FFT and TFFT at 3.0Tesla compared to 1.5Tesla was between 1.5Tesla and -6 dB, and between 3.0Tesla and 0 dB, the DWI pulse sequence for the patient's noise reduction was appropriately MR examination needs to be applied.

Ultrasonic Nondestructive Evaluation of Creep-Induced Cavities (크리프 기공의 초음파 비파괴평가에 관한 연구)

  • Jang, Young-Su;Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.110-117
    • /
    • 1999
  • In order to ultrasonically evaluate creep cavities pure copper samples were subjected to creep test and their microstructures were examined. Ultrasonic velocities. frequency-dependent magnitude spectra and attenuations were measured on a series of copper samples obtained from the different stages of creep test. Velocities measured in three directions with respect to the loading axis decreased and their anisotropy increased as a function of the creep-induced porosity. The anisotropic behavior could be attributed to the progressive change of pore shape and preferred orientation as the creep advanced. The 2% porosity by volume decreased the longitudinal and shear wave velocities by 11% and 4%, respectively. Furthermore, both velocities decreased nonlinearly with the porosity. As the creep damage developed, the magnitude spectra lost high frequency components and their central frequencies shifted to lower values. The attenuation showed almost linear behavior in the frequency range used. Normalized velocity, central frequency shift and attenuation slope were selected as nondestructive evaluation parameters. These results were presented and showed good relations with the porosity content.

  • PDF

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (I) - Problem Statements of the Current Seismic Design Code (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (I) - 국내 내진설계기준의 문제점 분석)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.39-50
    • /
    • 2006
  • Site response analyses were peformed based on equivalent linear technique using the shear wave velocity profiles of 162 sites collected around the Korean Peninsula. The she characteristics, particularly the shear wave velocities and the depth to bedrock, are compared to those in the western United States. The site coefficients of short period $(F_a)$ and the long period $(F_v)$ obtained from this study were significantly different compared to 1997 Uniform Building Code (1997 UBC). $F_a$ underestimated the motion in shot period ranges and $F_v$ overestimated the motion in mid period ranges in Korean seismic guideline. It is found that the existing Korean seismic design code were is required to be modified considering geological site conditions in Korea for the reliable estimation of sue amplification. Problems of the current seismic design code were dicussed in this paper and the development of site classification method and modification of desing response spectra were discussed in the companion papers(II-Development of Site Classification System and III-Modification of Dosing Response Specra).

Characteristics of Silicon Rich Oxide by PECVD (PECVD에 의한 Sirich 산화막의 특성)

  • Gang, Seon-Hwa;Lee, Sang-Gyu;Park, Hong-Rak;Go, Cheol-Gi;Choe, Su-Han
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.459-465
    • /
    • 1993
  • By making the inter-metal PECVD $SiO_2$ as a Si rich oxide under the SOG, the hydrogen and water related diffusants could be captured a t SI dangling bonds. This gettering process was known to prevent the device characteristics degradations related to the H, $H_20$. The basic characteristics of Si rich oxide have been studied according to changing high/low frequency power and $SiH_4/N_2O$ gas flow ratio in PECVD. As increase in low frequency power, deposition rate decreased but K.I. and compressive stress increased. Decrease of the water peaks of FTIR spectra at the wave number range of 3300~3800$\textrm{cm}^{-1}$' also indicated that intensty the films were densified. As increase in SiH, gas flow rate, deposition rate, R.I. and etch rate increased while compressive stress decreased. F'TIK spectra showed that peak intensity corresponding to Si-0-Si stretching vibration decreased and shifted to the lower wave numbers. But AES showed that Si dangl~ng bonds were increased as a result of lower Si:O(l: 1.23) ratlo inthe Si rich oxide as compared to Si : O(1 : 1.98) ratio of usual oxide.

  • PDF