• Title/Summary/Keyword: Wave probe

Search Result 208, Processing Time 0.06 seconds

Loop Probe Design and Measurement of Electromagnetic Wave Signal for Contactless Cryptographic Analysis (비접촉 암호 분석용 루프 프로브 설계 및 전자파 신호 측정)

  • Choi, Jong-Kyun;Kim, Che-Young;Park, Jea-Hoon;Moon, Snag-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1117-1125
    • /
    • 2007
  • In this paper, a study has been performed on the design of small loop probe and analysis of induced electromagnetic wave signal from a smartcard for contactless cryptographic analysis. Probes for cryptographic analysis are different from conventional EM probes, because the purpose of proposed probe is to obtain the information for secret key analysis of cryptographic system. The waveform of induced voltage on probe must be very close to radiated waveform from IC chip on smartcard because electromagnetic attack makes an attempt to analyze the radiated waveform from smartcard. In order to obtain secret key information, we need to study about cryptographic analysis using electromagnetic waves, an approximate model of source, characteristic of probe for cryptographic analysis, measurement of electromagnetic waves and calibration of probes. We measured power consumption signal on a smartcard chip and electromagnetic wave signal using proposed probe and compared with two signals of EMA point of view. We verified experimently the suitability of the proposed small loop probe for contactless cryptographic analysis by applying ARIA algorithm.

Fabrication of Near-field Scanning Optical Microscope(NSOM) Probe by Chemical Etching (화학적 식각을 이용한 근접장 주사 현미경용 탐침의 제작)

  • Kim, Sung-Chul;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.555-557
    • /
    • 1995
  • In near field optics, optical fiber probe is smaller than the wavelength of light. This small probe makes it possible to overcome the diffraction limit due to wave property of light. In conventional optical systems, the image resolution is governed by wavelength. But in NSOM, it is determined by probe tip size and probe shape. Therefore probe tip size and shape are very important points in near field optics. In this paper, we will suggest the new fabrication methods of optical fiber probe and show that the probe tip size is sub-micrometer using SEM.

  • PDF

Numerical Modeling of Perturbation Effects of Electrostatic Probe into 2D ICP(inductively coupled plasma) (2D-ICP(inductively coupled plasma)에서 정전 탐침 삽입 시의 플라즈마 수치 계산)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • Numerical modeling is used to investigate the perturbation of a single Langmuir probe (0.2 mm diameter shielded with 6 mm insulator) inserted along the center axis of a cylindrical inductively coupled plasma chamber filled with Ar at 10 mTorr and driven by 13 MHz. The probe was driven by a sine wave. When the probe tip is close to a substrate by 24.5 mm, the probe characteristics was unperturbed. At 10 mm above the substrate, the time averaged electric potential distribution around the tip was severly distorted making a normal probe analysis impossible.

Development of photothermal mirage technique for measuring thermal diffusivity (열확산도 측정을 위한 광열 신기루 기법 개발)

  • Kim, Dong-Sik;Choi, Sun-Rock;Lee, Joo-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1395-1400
    • /
    • 2003
  • This paper introduces a novel scheme for determining the thermal diffusivity of solids using the photothermal mirage technique. The suggested scheme extends the thermal-wave coupling method, employing the solution to the heat conduction equation in close proximity to the pump beam. Therefore, determination of thermal diffusivity is possible by detecting the mirage signal with small separation between the probe and pump beams, with enhanced intensity of the mirage signal. Though the method requires information about the probe-beam height, the absolute transverse position of the probe beam need not be known as it is automatically evaluated by the iterative-computation procedure. The thermal diffusivity of Ni is measured by the proposed scheme and the result demonstrates good agreement with the literature value to within 5 %.

  • PDF

Development of a scratch tester using a two-component force sensor (2축 힘센서를 이용한 스크레치 테스트 개발)

  • 김종호;박연규;이호영;박강식;오희근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1018-1021
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the horizontal forces simultaneously as the probe tip of the equipment approaches to the interface between thin film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ∼ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester. the feasibility test was performed to evaluate the adhesive strength of semiconductor wafer.

  • PDF

Experimental Research of an ECR Heating with R-wave in a Helicon Plasma Source

  • Ku, Dong-Jin;An, C.Y.;Park, Min;Kim, S.H.;Wang, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.274-274
    • /
    • 2012
  • We have researched on controlling an electron temperature and a plasma collision frequency to study the effect of collisions on helicon plasmas. So, we have designed and constructed an electron cyclotron resonance (ECR) heating system in the helicon device as an auxiliary heating source. Since then, we have tried to optimize experimental designs such as a magnetic field configuration for ECR heating and 2.45GHz microwave launching system for its power transfer to the plasma effectively, and have characterized plasma parameters using a Langmuir probe. For improving an efficiency of the ECR heating with R-wave in the helicon plasma, we would understand an effect of R-wave propagation with ECR heating in the helicon plasma, because the efficiency of ECR heating with R-wave depends on some factors such as electron temperature, electron density, and magnetic field gradient. Firstly, we calculate the effect of R-wave propagation into the ECR zone in the plasma with those factors. We modify the magnetic field configuration and this system for the effective ECR heating in the plasma. Finally, after optimizing this system, the plasma parameters such as electron temperature and electron density are characterized by a RF compensated Langmuir probe.

  • PDF

Design of Vertical Type MEMS Probe with Branch Springs (분기된 구조를 갖는 수직형 MEMS 프로브의 설계)

  • Ha, Jung-Rae;Kim, Jong-Min;Kim, Byung-Ki;Lee, June-Sang;Bae, Hyeon-Ju;Kim, Jung-Yup;Lee, Hak-Joo;Nah, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.831-841
    • /
    • 2010
  • The conventional vertical probe has the thin and long signal path that makes transfer characteristic of probe worse because of the S-shaped structure. So we propose the new vertical probe structure that has branch springs in the S-shaped probe. It makes closed loop when the probe mechanically connects to the electrode on a wafer. We fabricated the proposed vertical probe and measured the transfer characteristic and mechanical properties. Compared to the conventional S-shaped vertical probe, the proposed probe has the overdrive that is 1.2 times larger and the contact force that is 2.5 times larger. And we got the improved transfer characteristic by 1.4 dB in $0{\sim}10$ GHz. Also we developed the simulation model of the probe card by using full-wave simulator and the simulation result is correlated with measurement one. As a result of this simulation model, the cantilever probe and PCB have the worst transfer characteristic in the probe card.

DC Langmuir Probe for Measurement of Space Plasma: A Brief Review

  • Oyama, Koichiro
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.167-180
    • /
    • 2015
  • Herein, we discuss the in situ measurement of the electron temperature in the ionosphere/plasmasphere by means of DC Langmuir probes. Major instruments which have been reported are a conventional DC Langmuir probe, whose probe voltage is swept; a pulsed probe, which uses pulsed bias voltage; a rectification probe, which uses sinusoidal signal; and a resonance cone probe, which uses radio wave propagation. The content reviews past observations made with the instruments above. We also discuss technical factors that should be taken into account for reliable measurement, such as problems related to the contamination of electrodes and the satellite surface. Finally, we discuss research topics to be studied in the near future.

A Cutoff Probe for the Measurement of High Density Plasma

  • Yu, Gwang-Ho;Na, Byeong-Geun;Kim, Dae-Ung;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.148-148
    • /
    • 2012
  • A cutoff probe is the novel diagnostic method to get the absolute plasma density with simple system and less assumption. However, high density of ion flux from plasma on probe tip can make the error of plasma density measurement because the dielectric material of probe tip can be damaged by ion flux. We proposed a shielded cutoff probe using the ceramic tube for protection from ion flux. The ceramic tube on probe tip can intercept the ion flux from plasma. The transmitted spectrum using the shielded cutoff probe is good agreement with E/M wave simulation result (CST Microwave Studio) and previous circuit simulation of cutoff probe [1]. From the analysis of the measured transmitted spectrum base on the circuit modeling, the parallel resonance frequency is same as the unshielded cutoff probe case. The obtained results of electron density is presented and discussed in wide range of experimental conditions, together with comparison result with previous cutoff method.

  • PDF

Narrow Resonant Double-Ridged Rectangular Waveguide Probe for Near-Field Scanning Microwave Microscopy

  • Kim, Byung-Mun;Son, Hyeok-Woo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.406-412
    • /
    • 2018
  • In this paper, we propose a narrow resonant waveguide probe that can improve the measurement sensitivity in near-field scanning microwave microscopy. The probe consists of a metal waveguide incorporating the following two sections: a straight section at the tip of the probe whose cross-section is a double-ridged rectangle, and whose height is much smaller than the waveguide width; and a standard waveguide section. The advantage of the narrow waveguide is the same as that of the quarter-wave transformer section i.e., it achieves impedance-matching between the sample under test (SUT) and the standard waveguide. The design procedure used for the probe is presented in detail and the performance of the designed resonant probe is evaluated theoretically by using an equivalent circuit. The calculated results are compared with those obtained using the finite element method (Ansoft HFSS), and consistency between the results is demonstrated. Furthermore, the performance of the fabricated resonant probe is evaluated experimentally. At X-band frequencies, we have measured the one-dimensional scanning reflection coefficient of the SUT using the probe. The sensitivity of the proposed resonant probe is improved by more than two times as compared to a conventional waveguide cavity type probe.