• 제목/요약/키워드: Wave pressure characteristics

검색결과 610건 처리시간 0.029초

직선터널에서 지하철 열차의 교차운행 시 반사파 간섭에 따른 유동 특성 비교분석 (Comparative Analysis of Flow Characteristics Using Reflected Pressure Wave at Crossing of Subway Trains in Straight Tunnel)

  • 이득선;조정민;이명호;성재용
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.123-129
    • /
    • 2018
  • In this study, CFD is used to compare and analyze the flow characteristics using reflected pressure wave during the intersection of two trains in straight tunnel. Two tunnels of different lengths; 600 m and 3,400 m were designed and numerical analysis of the flow characteristics of two tunnels carried out by setting the crossing state of the two trains at a constant velocity of 27 m/s form the center of the tunnel. The simulation model was designed using the actual tunnel and subway dimensions The train motion was achieved by using the moving mesh method. For the numerical analysis, $k-{\omega}$ standard turbulence model and an ideal gas were used to set the flow conditions of three-dimensional, compressible and unsteady state. In the analysis results, it was observed that the inside of the long tunnel without interference of the reflected pressure wave was maintained at a pressure lower than the atmospheric pressure and that the flow direction was determined by the pressure gradient and shear flow. On the other hand, the flow velocity in the short tunnel was faster and the pressure fluctuation was noted to have increased due to the reflected pressure wave, with more vortices formed. In addition, the flow velocity was noted to have changed more irregularly.

Supersonic Moist Air Flow with Condensation in a Wavy Wall Channel

  • Ahn, Hyung-Joon;Kwon, Soon-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.492-499
    • /
    • 2001
  • The characteristics of Prand시-Meyer expansion of supersonic flow with condensation along a wavy wall in a channel are investigated by means of experiments and numerical analyses. Experiments are carried out for the case of moist air flow in an intermittent indraft supersonic wind tunnel. The flow fields are visualized by a Schlieren system and the distributions of static pressure along the upper wavy wall are measured by a scanning valve system with pressure transducers. In numerical analyses, the distributions of streamlines, Mach lines, iso-pressure lines, and iso-mass fractions of liquid are obtained by the two-dimensional direct marching method of characteristics. The effects of stagnation temperature, absolute humidity, and attack angle of the upper wavy wall on the generation and the locations of generation and reflection of an oblique shock wave are clarified. Futhermore, it is confirmed that the wavy wall plays an important role in the generation of an oblique shock wave and that the effect of condensation on the flow fields is apparent.

  • PDF

체적부하를 갖는 유체 전달관로의 압력전파 특성 (The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line)

  • 윤선주;손병진
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

터널내 교행 열차의 풍압에 대한 특성법 해석 (Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel)

  • 남성원
    • 한국철도학회논문집
    • /
    • 제16권6호
    • /
    • pp.454-459
    • /
    • 2013
  • 열차가 터널에 고속으로 진입하면, 압력파가 발생한다. 열차 선두부의 진입에 의하여 발생한 압축파는 터널을 따라 진행되어 터널 출구에서 반사되어 팽창파로 되돌아오며, 후미부의 진입에 의하여 발생한 팽창파도 터널을 따라 전파되어 터널 출구에서 압축파로 반사되어 터널 입구로 되돌아 온다. 열차 선두부 및 후미부에 의하여 발생한 이러한 압력파는 터널 입구 및 출구에서 각각 반사되어 터널 내부를 왕복하며, 차량 객실에 탑승한 승객들에게는 이명감을 일으키고, 터널 출구에서는 환경소음의 일종인 미기압파를 발생시킨다. 터널에서의 큰 압력 변동은 터널의 최적 단면적 설계에도 주요 인자로 고려되고 있으며, 차체의 반복 피로 하중으로 작용하므로, 이에 대한 정량적 및 정성적 분석이 필요하다. 본 연구에서는 고정 격자계를 이용하여 개발한 특성 해법을 교행하는 열차에 대하여 적용하였으며, 교행시의 열차 선두부 및 후미부의 경계 조건식을 개발하여, X-t선도와 같이 해석하였다. 해석 결과, 교행 열차의 특정 터널진입 시간에 압력파 간의 상쇄가 일어남을 알 수 있었다.

두 연속 터널을 전파하는 압축파의 실험적 연구 (Experimental study of compression waves propagating into two-continuous tunnels)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

혼성방파제의 케이슨에 작용하는 비선형양압력분포에 관한 연구 (Nonlinear Uplift Wave Pressure Distribution Acting on the Caisson of Composite Breakwater)

  • 김도삼;배기성
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.20-27
    • /
    • 2001
  • Recently numerical approaches for wave loads acting on the vertical caisson of breakwater, and resulting wave reflection and transmission coefficients have been performed. Although the numerical studies by Sulisz's(1997) and Kim et al.(2000) are suggested representatively, theoretical formulation for nonlinear wave pressure is not developed yet. And experimental results of Sulisz(1997) revealed that nonlinear uplift pressure on the caisson may be produced largely on the case of caisson founded on the high rubble mound. From the results of this study, the nonlinear theory for the uplift wave pressure acting on the caisson by applying boundary integral method of Green theorem is formulated, and also the characteristics of nonlinear uplift pressure and run-up height on the caisson are evaluated numerically, according to the variations of hydraulic properties of the rubble mound.

  • PDF

탄성파의 응력평가를 위한 가시화시스템 설계 (Design of Visualization System for Stress Evaluation of Elastic Wave)

  • 남영현
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.576-582
    • /
    • 2008
  • This paper describes a synthesized photoelastic method developed for the visualization and evaluation of sound pressure distribution of elastic wave in a solid. The visualization of wave stress field is achieved by synthesizing two photoelastic pictures, in which the direction of the principal axis of linear polariscopes differs by $45^{\circ}$. From the analysis of the wave stress distribution using this method, it is possible to evaluate the characteristics of elastic waves in a solid, such as the intensity of stress, directivity and resolution characteristics of the wave emitted from a commercial probe, and characteristics of scattering from various types of defects.

여객/화물 복합열차 HSB의 터널 공력특성에 대한 시뮬레이션 연구 (A Numerical Study on Aerodynamic Characteristics in Tunnel for High Speed Combi Train-HSB)

  • 노주현
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.54-59
    • /
    • 2014
  • The new high speed combi train prototype project was developed which named HSB. It runs over the speed of 330km/h. As the speed of the train exceeds over 300km/h, due to pressure change in tunnel, aerodynamic problems such as sudden drag increase, severe acoustic noise, passenger discomfort and tunnel pressure sonic boom were occurred. This aerodynamic characteristics in tunnel should be reviewed in early design state to enhance the performance and driving quality of new high speed train. In this paper, the aerodynamic characteristics in tunnel for HSB such as pressure waves in tunnel, a rate of pressure change in cabin and micro pressure wave that cause sonic boom outside tunnel are analyzed by 2D axisymmetric CFD simulations. The results are also compared with the value for ordinary high speed train like the KTX-Sancheon. It is helpful how to design the configuration of HSB train. Finally it shows that the HSB train was well designed in tunnel condition because all values fulfill the criterions on UIC code and Korean national regulations.

연직구조물에 작용하는 고립파 파력 특성에 관한 실험 (Laboratory Experiments for Solitary Wave Force on Vertical Structures)

  • 한세종;서규학;조용식
    • 한국수자원학회논문집
    • /
    • 제47권11호
    • /
    • pp.1067-1076
    • /
    • 2014
  • 본 연구는 고립파를 이용하여 수중에 설치된 연직구조물에 작용하는 지진해일 파력 측정 수리실험을 수행하였다. 다수의 파압계를 이용하여 구조물에 작용하는 파압분포를 측정하였고 측정된 파압분포를 통해 파력을 산출하였다. 측정된 실험결과를 바탕으로 해안구조물 설계에 사용되는 파압예측 경험식과 비교하였고 구조물 단면현상에 따라 파압분포의 차이를 분석하였다. 또한, 구조물 전 후면에서 파고측정을 통해 입사파와 투과파를 비교하였으며 구조물의 형상이 파고변화에 미치는 영향을 분석하였다.

고분자 절연재료내의 Tree성장과 유전손 특성에 미치는 초음파의 영향 (The Effect of Ultrasonic Wave on the Characteristics of Tree Growth and Dielectric Loss in Polymer Insulation Material)

  • 전춘생;김원식;김상현;박원규
    • 대한전기학회논문지
    • /
    • 제40권12호
    • /
    • pp.1242-1251
    • /
    • 1991
  • This paper is to investigate the tree growth phenomena and the characteristics of $\varepsilon$' and tan$\delta$ for the effect of ultrasonic wave on polymer insulation material. The conclusions are as follows. 1) As the pressure amplitude of ultrasonic wave is larger and its irradiated time is longer, tree inception voltage and its breakdown voltage in specimen are smaller, and tree growing is faster. 2) As the irradiated quantity of ultrasonic wave is more increased, the value of tan$\delta$ is larger, but the value of $\varepsilon$' is almost constant. 3) The effect by the pressure amplitude of ultrasonic wave is greater than that by its irradiated time on the insulation characteristics of polymer material.