• Title/Summary/Keyword: Wave height rate

Search Result 105, Processing Time 0.025 seconds

Numerical Analysis of Nonlinear Shoaling Process of Random Waves - Centered on the Evolution of Wave Height Distribution at the Varying Stages of Shoaling Process (불규칙 파랑 비선형 천수 과정 수치해석 - 천수 단계별 파고분포 변화를 중심으로)

  • Kim, Yong Hee;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.106-121
    • /
    • 2020
  • In order to make harbor outskirt facilities robust using the reliability-based design, probabilistic models of wave heights at varying stage of shoaling process optimized for Korean sea waves are prerequisite. In this rationale, we numerically simulate the nonlinear shoaling process of random waves over the beach with a sandbar at its foreshore. In doing so, comprehensive numerical models made of spatially filtered Navier-Stokes Eq., LES [Large Eddy Simulation], dynamic Smagorinsky turbulence closure were used. Considering the characteristics of swells observed at the east coast of Korean Peninsula, random waves were simulated using JONSWAP wave spectrum of various peak enhancement coefficients and random phase method. The coefficients of probabilistic models proposed in this study are estimated from the results of frequency analysis of wave crests and its associated trough detected by Wave by Wave Analysis of the time series of numerically simulated free surface displacements based on the threshold crossing method. Numerical results show that Modified Glukhovskiy wave height distribution, the most referred probabilistic models at finite water depth in the literature, over-predicts the occurring probability of relatively large and small wave heights, and under predicts the occurrence rate of waves of moderate heights. On the other hand, probabilistic models developed in this study show vary encouraging agreements. In addition, the discrepancy of the Modified Glukhovskiy distribution from the measured one are most visible over the surf zone, and as a result, the Modified Glukhovskiy distribution should be applied with caution for the reliability-based design of harbor outskirt facilities deployed near the surf-zone.

A Numerical Study on Effects of Flow Analysis with Flow Control Valve on Turbine of OWC Type Wave Power Generator (유량 조절 밸브가 탑재된 진동수주형 파력발전장치의 터빈 내 유동해석을 위한 수치해석 연구)

  • Ro, Kyoung-Chul;Oh, Jae-Won;Kim, Gil-won;Lee, Jung-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.801-808
    • /
    • 2021
  • In this paper, a numerical analysis was conducted on the effect of the flow control valve of a oscillation water column(OWC) type wave power generator turbine. The OWC wave power turbine operates with compressed air in the air chamber according to the change of wave height. When the wave height changes rapidly, a flow control valve is required due to overload of the turbine and reduced efficiency. Therefore, in this paper, a flow control valve with an opening angle of 60 degrees was installed in the front of the turbine, and the pressure drop, torque, and overall performance were calculated according to the change of turbine RPM and flow rate of turbine inlet. In conclusion, the flow control valve with an opening angle of 60 degrees affects when the turbine rotates at low rotation and the inlet flow rate is large. But it does not have a significant effect on overall turbine performance and it is necessary to find the optimal angle in the future works.

Effect of the characteristics of buoy on the holding power of trapnet (부이의 특성이 통발어구의 고정력에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In this paper, numerical modeling is conducted to analyze the tension of an anchor line by varying the size and drag coefficient of a buoy when the trapnet is influenced by the wave and the current simultaneously. A mass-spring model was used to analyze the behavior of trapnet underwater under the influence of waves and current. In the simulation of numerical model, wave height of 3, 4, 5 and 6 m, a period of 4.4 s, and the flow speed of 0.7 m/s were used for the wave and current condition. The drag coefficients of buoy were 0.8, 0.4 and 0.2, respectively. The size of buoy was 100, 50 and 25% based on the cylindrical buoy ($0.0311m^3$) used for swimming crab trap. The drag coefficient of the trapnet, the main model for numerical analysis, was obtained by a circular water channel experiment using a 6-component load cell. As a result of the simulation, the tension of the anchor line decreased proportional to buoy's drag coefficient and size; the higher the wave height, the greater the decrease rate of the tension. When the buoy drag coefficient and size decreased to one fourth, the tension of the anchor line decreased to a half and the tension of the anchor line was lower than the holding power of the anchor even at 6 m of wave height. Therefore, reducing the buoy drag coefficient and size appropriately reduces the trapnet load from the wave, which also reduces the possibility of trapnet loss.

Characteristics of Pulse Waves in Various Age Categories and Applicability of Pulse Wave to Metabolic Syndrome Using Pen-type Piezoresistive Sensor (펜타입 압저항 센서를 활용한 연령별 맥파 특성 및 맥파의 대사증후군에의 적용 가능성 평가)

  • Ha, Ye-Jin;Cho, Mun-Young;Yun, Jong-Min;Jun, Kyu-Sang;Park, Soo-Jung;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.257-271
    • /
    • 2012
  • Objectives : The purpose of this study was to confirm that the pulse analyzer is useful for analyzing characteristics of variables of pulse waves in age categories, evaluating pulse waves of the metabolic syndrome group, compared with those of the non-metabolic syndrome group in Korean adults. Methods : The pulse wave variables were measured in Guan of all 1,056 subjects by the pulse analyzer, using a pen-type piezoresistive sensor. The physical measurement, blood test and survey were also performed by each subject. Results : In the age categories, height of pre-incisura (h2), height of tidal wave (h3), area of percussion wave (Aw), and width of percussion wave (w) increased in accordance with increase in age. While ratio of systolic period area (As) went up according to the increase of age, ratio of diastolic period area (Ad) went down. Radial augmentation index (R-AI), h2/h1, h3/h1, w/t and angle of percussion wave went up by aging, generally. Aw rate (Aw/At) also increased. Among the metabolic syndrome group, in the ages of 19 and 44, ratio of systolic period area (As) was higher and ratio of diastolic period area (Ad) was lower than in the non-metabolic group. w/t, Aw/At, and angle of percussion wave were higher than in the non-metabolic syndrome group. Among the metabolic syndrome group over the age of 60, height of pre-incisura (h2), height of tidal wave (h3), total area (At), area of percussion wave (Aw), radial augmentation index (R-AI), h2/h1 and h3/h1 were higher than in the non-metabolic syndrome group. Conclusions : The pulse analyzer is useful to analyze arterial stiffness in the age categories and in the metabolic syndrome group by some measures.

Effects of bee venom acupuncture on heart rate variability, pulse wave, and cerebral blood flow for types of Sasang Constitution (봉약침 자극이 사상체질별 건강인의 심박변이도, 맥파, 뇌혈류에 미치는 영향)

  • Lee, Sang-Min;Kim, Koo;Oh, Seung-Yun;Kwon, Young-Mi;Joo, Jong-Cheon
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • 1. Objectives To evaluate effects of bee venom acupuncture on cardiovascular system and differences according to each constitution. 2. Methods Heart rate variability, pulse wave and the velocity of cerebral blood flow were measured before bee venom acupuncture(BVA), right after and after 30 minuets, had been applied to 20 subjects. 3. Results 1. BVA did not have effects on measurement variables of heart rate variability. 2. BVA had effects on pulse wave, showing total time, radial augmentation index up and height of percussion wave, time to percussion wave, sum of pulse pressure down. 3. BVA did not have effects on the cerebral blood flow velocity when considering not Sasang Constitution. 4. Considering Sasang Constitution, BVA demonstrates different responses in time to preincisura wave, mean blood flow velocity, peak systolic velocity and end diastolic velocity. 4.Conclusion From those results, the following conclusions are obtained. Cause BVA alters pulse wave and makes differences in the cerebral blood flow velocity according to Sasang Constitution. Various methods of BVA treatment are needed considering Sasang Constitution.

Distribution of Marine Debris collected from the Sandbar Coastline of Nakdong River Estuary after the Typhoons' Passage (태풍 내습후 낙동강 하구 사주해안의 쓰레기 분포)

  • Park, Son;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Using field observations, this study estimated the total weight and types of marine debris along the coast of Jinu Island in the Nakdong River Estuary after typhoons Usagi and Nari had passed. A numerical wave model was used to calculate the spatial wave height distribution at the time of the typhoons' passage. This study found that the total accumulation rate of marine debris deposited on the coast after the two typhoons had passed was about $5,769.86\;kg/km^2/day$ at this site, which was 14.42 times as high as that in normal weather. The wave height distribution in the sea off Jinu Island, based on numerical modeling, was $4.1{\sim}3.5\;m$, which was 1.0-2.5 times greater than for the case of other islands. Therefore, it is likely that the concentration of wave energy led to the deposition of marine debris.

  • PDF

Correlation Analysis between Wave Parameters using Wave Data Observed in HeMOSU-1&2 (HeMOSU-1&2의 파랑 관측 자료를 이용한 파랑 변수 간 상관관계 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Cho, Hong-Yeon;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.139-147
    • /
    • 2021
  • In this study, waves were defined using the water surface elevation data observed from the HeMOSU-1 and 2 marine meteorological observation towers installed on the west coast of Korea, and correlation analysis was performed between wave parameters. The wave height and wave period were determined using the wave-train analysis method and the wave spectrum analysis method, and the relationship between the wave parameters was calculated and compared with the previous study. In the relation between representative wave heights, most of the correlation coefficients between waves showed a difference of less than 0.1% in error rate compared to the previous study, and the maximum wave height showed a difference of up to 29%. In addition, as a result of the correlation analysis between the wave periods, the peak period was estimated to be abnormally large at rates of 2.5% and 1.3% in HeMOSU-1&2, respectively, due to the effect of the bimodal spectrum that occurs when the spectral energy density is small.

An Experimental Study on the Estimation Method of Overtopping Discharge at the Rubble Mound Breakwater Using Wave-Overtopping Height (월파고를 이용한 사석경사제의 월파량 산정방법에 관한 실험적 연구)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2024
  • Wave overtopping is a significant natural hazard that occurs in coastal areas, primarily driven by high waves, particularly those generated during typhoons, which can cause coastal flooding. The development of residential and commercial areas along the coast, driven by increasing social and economic demands, has led to a concentration of people and assets in these vulnerable areas. This, coupled with long-term sea level rise and an increase in typhoon frequency, has heightened the risk of coastal hazards. Traditionally, the evaluation of wave overtopping volumes has relied on directly measuring the collected volume of water that exceeds the crest height of structures through hydraulic model experiments. These experiments are averaged over a specific measurement period. However, in this study, we propose a new method for estimating individual wave overtopping volumes. We utilize the temporal variation of wave overtopping heights to develop an observation system that can quantitatively assess wave overtopping volumes in actual coastal areas. To test our method, we conducted hydraulic model experiments on rubble mound breakwaters, which are commonly installed along the Korean coast. We introduce wave overtopping discharge coefficients, assuming that the inundation velocity from the structure's crest is the long-wave velocity. We then predict overtopping volumes based on wave overtopping heights and compare and review the results with experimental data. The findings of our study confirm the feasibility of estimating wave overtopping volumes by applying the overtopping discharge coefficients derived in this study to wave overtopping heights.

Analysis and Quantification of Seawater Infiltration by Wave Action in Coastal Zone (연안해역에서 파도에 의한 해수 침투이론의 비교와 정량화)

  • Cheong Cheong-jo;Choi Doo-hyoung;Kim Tae-keun;Okada Mitsumasa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To know the seawater infiltration into tidal flat sediment in coastal area is very important, because it is significantly correlated with the infiltration and transportation of pollutants in soil, the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival of benthic organisms and the seawater purification. So, we set up purpose to clarify the infiltration behavior of seawater by wave action in tidal flat, to clear the effects of slope of tidal flat and breaking wave height on seawater infiltration and to quantify the infiltration volume of seawater. For purpose, the seawater infiltration was studied with visualization method by using coloring tracer and transparent glass beads replaced as natural sediment in model tidal flat. Specific conclusions derived from this study are as follows. The semi-circular type infiltration of seawater by wave action into saturated sediment was a new infiltration behavior that was not considered in previous studies. The infiltration rate of seawater was increased with increasing of breaking wave height and slope of tidal flat. However, the effects of the slope was bigger than that of breaking wave height on seawater infiltration into tidal flat sediments. It was possible to calculate the infiltration volume of seawater by wave action in natural tidal flat sediment and in fields. Therefore, we can point out that wave action play an important role in the supply of dissolved oxygen, nutrients and organic matter to benthic organisms, transportation or diffusion of pollutants and seawater purification. So, we hope to be studied the supply of food to benthic organism, pollutant transport and seawater purification on the base of these results.

  • PDF

Analysis of Discharge Characteristics for the Seawater Exchange Breakwater Composed of Tunneled Breakwater and Submerged Mound (잠제가 설치된 유공형 해수교환방파제의 도수량 특성 분석)

  • Jeong, Shin-Taek;Lee, Dal-Soo;Cho, Hong-Yeon;Oh, Young-Min
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.465-473
    • /
    • 2004
  • Five parameters such as the entrance size of the front wall, conduit size, wave period, wave height and the width of water pool were selected to estimate the inflow rate, which is basic and essential input data to design seawater exchange breakwater with a submerged mound by conducting hydraulic model experiments. In the results of multiple regression analysis, log-log equation showed a good agreement rather than linear equation and the estimation of inflow rate was well done with only two parameters except entrance size of the front wall, wave period and the width of water pool. Finally, non-dimensional flow rate equation is derived.