• Title/Summary/Keyword: Wave height and period

Search Result 266, Processing Time 0.05 seconds

Development an embedded module for nondirectional wave spectrum analysis

  • Park, Soo-Hong;Wong, Sheng-Chao
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-461
    • /
    • 2008
  • This embedded module measures significant wave height and zero crossing periods through spectral energy from a record of time series heave motion. An ARM7TDMI core microcontroller serves as the main control unit which performs the appropriate control and signal conditioning. Monitored wave characteristic is transmitted with satellite modem. Mathematical equations on signal conditioning and experiments procedures are documented in this paper.

Response of square tension leg platforms to hydrodynamic forces

  • Abou-Rayan, A.M.;Seleemah, Ayman A.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.115-135
    • /
    • 2012
  • The very low natural frequencies of tension leg platforms (TLP's) have raised the concern about the significance of the action of hydrodynamic wave forces on the response of such platforms. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that coupling between various degrees of freedom has insignificant effect on the displacement responses. Moreover, for short wave periods (i.e., less than 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on the wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about its original position. Also, for short wave periods, a higher mode contribution to the pitch response accompanied by period doubling appeared to take place. For long wave periods, (12.5 and 15 sec.), this higher mode contribution vanished after very few cycles.

Characteristics of Waves Continuously Observed over Six Years at Offshore Central East Coast of Korea (우리나라 동해안 중부 해역에서 6년간 연속 관측된 파랑의 특성)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Cho, Hong-Yeon;Baek, Won-Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.88-99
    • /
    • 2019
  • This study presents the results of analysis for the wave data that were consecutively collected from February 2013 to November 2018 at the location of 1.6 km offshore from Namhangjin beach. The water depth at the location is 30.5 m and waves were measured by AWAC (Acoustic Wave And Current meter). By using wave-by-wave analysis and spectral analysis, wave heights and periods were evaluated and then the relationships between the quantities obtained by the two methods were proposed based on linear regression analysis. In addition, monthly and yearly variations of the significant wave height and period, and the peak wave direction were analyzed. Moreover, the relationship between the significant wave height and period was newly suggested. Variability and probability distribution of the significant wave period with respect to the significant wave height were also examined.

Numerical Study of Wave Run-up around Offshore Structure in Waves

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Yoon, Hyun-Sik;Chun, Ho-Hwan;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • This study presents the wave run-up height and depression depth around offshore cylindrical structures according to the wave period. The present study employs the volume of fluid method with the realizable turbulence model based on a commercial computational fluid dynamics software called the "STAR-CCM+" to simulate a 3D incompressible viscous two-phase turbulent flow. The present results for the wave run-up height and depression depth with regard to the wave period are compared with those of the relevant previous experimental and numerical studies.

Characteristics of Wave Propagation by Water Level Conditions at Wando Sea Area: Numerical Modeling (완도 해역의 해수면 조건에 따른 파랑 변형 특성)

  • Jeon, Yong-Ho;Yoon, Han-Sam;Kim, Dong-Hwan;Kim, Won-Seok;Kim, Heon-Tae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The aim of this study was estimated the characteristics of the wave propagation by the water level conditions using a numerical modeling method at the Wando sea area. For three cases numerical simulation on the condition of incident and incoming of the deepwater design wave and the season normal wave, the spatial distribution of the incident wave at study area were investigated. And the calculated numerical modeling results were compared with measured field wave data. According to on-site wave data measured for 18 days, the range of the significant wave height and period were 0.10~1.14 m, 4.35~8.74 sec, respectively, and the maximum wave height were 0.15~1.66 m. From the results of numerical model for offshore design wave incident, the wave height attacked from Southern-East direction at this study area were over maximum 10.5 m because of rapidly change of water depth. Numerical modeling by three water level conditions of Approxmate Lowest Low Water Level(Approx. L.L.W), Mean Sea Level(M.S.L) and Approximate Highest High Water Level(Approx. H.H.W) were practiced. From the results for the case of Approx. H.W.L, variations of wave height at the back area of islands were about 1.6 m at maximum value for the case of deepwater design wave incoming. The significant wave heights of winter season were bigger than summer under normal wave condition, the incident wave height over 5.5 m decreased by shielding effect of islands. The change of maximum wave height at summer season were distinct than winter and was about 1.2 m and 0.8 m, respectively.

Evaluation of the Harbor Operation Rate Considering Long Period Waves (장주기파를 고려한 항만 가동율의 평가)

  • 김규한
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • In this study, the characteristics of long period waves are analyzed by field observation at Sokcho harbor on the eastern coast of Korea. firstly. the pressure data obtained from field observation are transformed into water surface elevations and the wave by wave analysis is applied to the observed wave data. also, we select long period waves by setting up the range 30-200sec, and suggest the relationship between ordinary waves and long period waves using the concept of the significant wave height. and, we examine the effects oft he long period waves on the rate of the harbor operation. The observation results demonstrate that the long period waves with heights of 1.2-14.6cm and periods of 35.8-162sec exist at Sokcho harbor. also, we found the rates of harbor operation based on long period waves are 61.8%-99.5% lower than the usual rates of 93.8%-100%.

Performance assessment of pitch-type wave energy converter in irregular wave conditions on the basis of numerical investigation

  • Poguluri, Sunny Kumar;Kim, Dongeun;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-38
    • /
    • 2022
  • In this paper, a pitch-type wave energy converter (WEC-rotor) is investigated in irregular wave conditions for the real sea testing at the west coast of Jeju Island, South Korea. The present research builds on and extends our previous work on regular waves to irregular waves. The hydrodynamic characteristics of the WEC-rotor are assessed by establishing a quasi-two-dimensional numerical wave tank using computational fluid dynamics by solving the Reynolds-averaged Navier-Stokes equation. The numerical solution is validated with physical experiments, and the comparison shows good agreement. Furthermore, the hydrodynamic performance of the WEC-rotor is explored by investigating the effect of the power take-off (PTO) loading torque by one-way and two-way systems, the wave height, the wave period, operational and high sea wave conditions. Irrespective of the sea wave conditions, the absorbed power is quadratic in nature with the one-way and two-way PTO loading systems. The power absorption increases with the wave height, and the increment is rapid and mild in the two-way and one-way PTO loading torques, respectively. The pitch response amplitude operator increases as the wave period increases until the maximum value and then decreases. For a fixed PTO loading, the power and efficiency are higher in the two-way PTO loading system than in the one-way PTO loading system at different wave periods.

Investigation on the Behavioral and Hydrodynamic Characteristics of Submerged Floating Tunnel based on Regular Wave Experiments (규칙파 실험에 의한 수중터널의 거동 및 동수역학적 특성 고찰)

  • Oh, Sang-Ho;Park, Woo Sun;Jang, Se-Chul;Kim, Dong Hyawn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1887-1895
    • /
    • 2013
  • In this study, physical experiments were performed in a two-dimensional wave flume to investigate the hydraulic and structural performance of a SFT model. The experiments were made by generating regular waves of different heights and periods under various conditions of buoyancy to weight ratio (BWR) and water depth as well. Through the analysis of the experimental data, it was clarified that the sway and heave motions of the tunnel body linearly increased with wave height and period. In contrast, the roll motion was rather insignificant unless wave height and period were comparatively large as the design wave. Similarly proportional relationship with respect to wave height and period was obtained in case of the maximum tensile force acting on the tension legs and the wave loads on the tunnel body. Regarding the change of water depth or BWR conditions, generally decreasing trend was obtained according to increase of water depth but decrease of BWR for both of the magnitudes of structural behaviors or wave loadings on the SFT structure.

On the Joint Distribution of Wave Height, Period and Wave Direction in Random Sea Waves (다방향불규칙파랑장에서의 파고, 주기, 파향의 종합확률분포 유도과정 및 적합성)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 1990
  • A Wave transformation including wave breaking in shallow water region is a non-linear and discontinuous Phenomenon. Therefore, a so-called individual wave analysis (or a wave by wave analysis) rather than spectral approach seems to be adequate to investigate the wave transformation in such regions. In this study, a theoretical joint distribution of wave height, period and wave direction of zero-down crossing waves, which is required in the individual wave analysis in the shallow water region, is derived based on the hypothesis that sea surface is a Gaussian stochastic process and that a band-width of energy spectra is sufficiently narrow. The derived i oint distribution is found to be an effective measure to investigate characteristics of three-dimensional random wave field in shallow water through field measurements.

  • PDF

Relationship Analysis on the Monitoring Period and Parameter Estimation Error of the Coastal Wave Climate Data (연안 파랑 관측기간과 모수추정 오차 관계분석)

  • Cho, Hongyeon;Jeong, Weon-Mu;Jun, Ki Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the quantitative analysis and pattern analysis of the error bounds with respect to recording period were carried out using the wave climate data from coastal areas. Arbitrary recording periods were randomly sampled from one month to six years using the bootstrap method. Based on the analysis, for recording periods less than one year, it was found that the error bounds decreased rapidly as the recording period increased. Meanwhile, the error bounds were found to decrease more slowly for recording periods longer than one year. Assuming the absolute estimate error to be around 10% (${\pm}0.1m$) for an one meter significant wave height condition, the minimum recording period for reaching the estimate error for Sokcho and Geoje-Hongdo stations satisfied this condition with over two years of data, while Anmado station was found to satisfy this condition when using observational data of over three years. The confidence intervals of the significant wave height clearly show an increasing pattern when the percentile value of the wave height increases. Whereas, the confidence intervals of the mean wave period are nearly constant, at around 0.5 seconds except for the tail regions, i.e., 2.5- and 97.5-percentile values. The error bounds for 97.5-percentile values of the wave height necessary for harbor tranquility analysis were found to be 0.75 m, 0.5 m, and 1.2 m in Sokcho, Geoje-Hongdo, and Anmado, respectively.