• Title/Summary/Keyword: Wave generator design

Search Result 75, Processing Time 0.032 seconds

Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method (플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

Dynamic Analysis of Wave Energy Generation System by Using Multibody Dynamics (다물체 동역학을 이용한 파력발전기의 동적거동 분석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1579-1584
    • /
    • 2011
  • This paper discusses an energy system that can convert wave energy into electrical energy. This wave energy generation system is movable and has 12 arms and one generator. A multibody dynamic model for this system is established by using kinematic constraints. A gear mechanism, several kinematic constraints, and force elements are included in the model. Wave forces are obtained numerically from the time domain formulation based on the Morison equation. The MSC/ADAMS program is employed to carry out dynamic analysis of the wave energy generation system. The dynamic behavior responses of this system are analyzed for design verification. According to the results of the dynamic analysis, the yaw motion is relatively stable and kinetic energy sufficient to generate electrical energy is obtained when the wave height exceeds 1m.

Study of Power Output Characteristics of Wave Energy Conversion System According to Turbine Installation Method Combined with Breakwater (방파제 부착형 파력발전시스템의 터빈설치 방법에 따른 출력특성에 관한 연구)

  • Lee, HunSeok;Oh, Jin-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.317-321
    • /
    • 2015
  • Many kinds of generation systems have been developed to use ocean energy. Among these, with the use of an oscillating water column (OWC) for power generation is attracting attention. The OWC-type wave power generation system converts wave energy into electricity by operating a generator turbine with the oscillating water level in a column of water. There are two ways to convert wave power into electricity using an OWC. One uses a cross-flow turbine using the water level inside the OWC. The other method uses the flow of air in a Wells turbine, which depends on the water level. An experiment was carried out using a 2-D wave tank in order to minimize the number of empirical tests. The design factors were taken from Koo et al. (2012) and the experimental environment assumed by free surface motion. This paper deals with characteristics of two types of wave energy conversion systems combine with a breakwater. One model uses an air-driven Wells turbine and a cross-flow water turbine. The other type uses a cross-flow water turbine. Wave energy converters with OWCs have mostly been studied using air-driven Wells turbines. The efficiency of the cross-flow turbine was about 15% higher than that of the other model, and the water level of the OWC internal chamber for the cross-flow water turbine and air-driven Wells turbine was less than about 40% lower than the one using only the cross-flow water turbine.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

A design of Hybrid power generation system for Ocean facilities (해양시설물용 하이브리드 발전시스템 설계)

  • Jung, Sung-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.381-385
    • /
    • 2009
  • Generally power system of ocean facility composes a solar generation system.The power to be generated by the solar system is changed according to the amount of sunlight of weather conditions. Output power of solar system is decreased with weather condition such as cloudy day and rainy day. And the power shortage of the ocean facility can occur due to the lack of solar energy. To solve this problem, this paper proposes the power control system for solar-wave hybrid system Wave generation system consists of wells turbine and permanent magnet synchronous generator(PMSG). This propose system set the specific area and measures the solar generation power and wave generation power. As a result of experiment, the solar power is a more static source than wave power, but the wave power provides energy during periods of no sunshine. The power characteristic of propose hybrid system have been obtained high reliability than a solar generation system.

Adaptive Current Control of Power LEDs Using Half-Bridge LLC Resonant Converter (Half Bridge LLC 공진 컨버터를 이용한 파워 LED의 정전류 적응제어기)

  • Kim, Yeung-Suk;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.48-53
    • /
    • 2013
  • In general, the LLC resonant topology consists of three stages as; square wave generator, resonant network, and rectifier network. LLC resonant converter has the time slowly varying parameters. However, the power LEDs as the load of LLC converter can be regarded as fast time varying parameters. In this paper, the mathematical model of half-bridge resonant converter including with the power LEDs is introduced for the current controller design model. Using this controller design model, the parameter adaptive output feedback controller will be designed to control the power LEDs current. In order to show the validities of the proposed model, the parameter adaptive output feedback controller, the experimental investigation will be presented.

Integrated Dynamic Modeling and Hardware Oriented Control Scheme for a Simulator of an Industrial Robot (산업용 로보트의 시뮬레이터를 위한 종합적인 동적모델링과 하드웨어 구성과 일치하는 제어구조)

  • 이민기;이광남;임계영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1759-1769
    • /
    • 1989
  • This paper presents the development of a simulator for an industrial robot. The simulator is characterized by a fully integrated dynamic model and a hardware oriented control scheme. The dynamic model includes the actuator dynamics as well as the manipulator dynamics to integrate the entire dynamics of the robot system. On the other hand, the control scheme is oriented as a hardware structure which is usually implemented in the industrial robot. That is to say, a conventional PI control law is used to regulate the position, the speed, and the current. A Pulse Wave Modulation (PWM)generator modulates the supplied voltage to the actuator. Since the simulator is consistent with the industrial robot system, it provides the essential design concepts for the development process of the robot. In practice, the simulator is applied to the SCARA robot which has been developed in GSIS. Here, it investigates the characteristics and performance of the robot with changing design parameters. Thus, the investigation furnishes criteria for the selection of acfuator, control gain, trajectory planning, etc.

  • PDF

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

Flexural Beam Design of Ultrasonic Object Levitation Slide System (초음파 물체부상 이송시스템의 Flexural Beam 설계)

  • Jeong, Sang-Hwa;Kim, Hyun-Uk;Choi, Suk-Bong;Kim, Kwang-Ho;Park, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.959-962
    • /
    • 2005
  • In the semiconductor and optical industry. a new transport system which can replace the conventional transport system is required. The Transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required for reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system for levitation object are proposed. The 3D vibration profiles of the beam are measured by Laser Scanning Vibrometer for verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured fore evaluating the performance.

  • PDF

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.