• Title/Summary/Keyword: Wave generator design

Search Result 75, Processing Time 0.035 seconds

Design and Characteristic Analysis of Slotless-type Linear Generator with Halbach Array (Halbach 영구자석 배열의 공심형 선형발전기의 설계 및 특성 해석)

  • Jeong, Su-Kwon;Han, Kwang-Gyu;Ahn, Ho-Jin;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.856-857
    • /
    • 2008
  • Wave power generation as an environmentally -friendly energy has received the attention. In this paper, therefore, the tubular type Permanent Magnet Linear Synchronous Generator (PMLSG) is proposed for wave power generation. The characteristics of tubular type PMLSG are investigated by analysis using a Finite Element Analysis (FEA). Moreover, the operating performance of generator under no-load and load with variable resistance is examined. And Taguchi method is applied for considering tolerance in manufacture. The results of FEA show that proposed tubular type PMLSG is a useful solution for small-scale wave power generation.

  • PDF

A Study of Development and Application with High Power Electron Beam (대전력 전자 빔의 개발 및 응용에 관한 연구)

  • Kim, Won-Sop;Kim, Jong-Man;Kim, Kyung-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.169-173
    • /
    • 2003
  • In this paper, we present a design and experiment study of high power large diameter backward wave oscillator. Analysis is made within the scope of linear theory of absolute instibility. The Electron beam generator may be atteractive source of high power millimeter microwaves which has simpler structure.

  • PDF

Study for generation of standard EM field using 8 ports-variable wave impedance generator (8단자 가변 임피던스 전자파 발생 장치를 이용한 표준 복사 전자기장 조성 연구)

  • 윤재훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.771-783
    • /
    • 1996
  • A desing technique of 8 ports variable wave impedance generator (8P-VWIG) is described. The design technique employs not only a numerical algorithm to find the structure with arbitrary characteristic impedance, but also a numerical solution to analyze the uniform elementrognentic fields established inside the generator. The 8P-VWIG so obtained is shown to have good performance with the VSWR of less than 1.4 at any frequency of interest below which higher order mode begin to propagate. The measured first resonant frequency is 152.1 MHz. The 8P-VWIG is designed based on the concept of an expanded multi-transmission line(8 channel). It is especially useful for the electronmagnetic interference(EMI) and electronmagnetic susceptibility(EMS) testing since it maximizes usable test crosssectional area, and its is easy change the polarization, vertical or horizontal, of field.

  • PDF

An Optimal Design Method of a Linear Generator for Conversion of Wave Energy (파력에너지 변환을 위한 선형발전기의 최적 설계 방법)

  • Kim, Jung-Yoon;Kim, Byung Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1195-1204
    • /
    • 2021
  • In this paper, we present an optimal design method for wave power generators using the response surface analysis. Especially, in our method, we reduce the mechanical loss by selecting the linear generator whose linear movement can be converted to the electrical energy directly with the vertical movement of waves. Therefore, we calculate the exciting force acting on the drive device in a slow-wave condition and determine the winding process with a ratio of the slots and poles for the improvement of energy conversion efficiency. In addition, we employ the regression analysis for deriving the shape factors of the stator and the translator, which have a significant effect on the performance of a generator. We choose the best design variables through the response surface analysis, and then we study the optimization method for designing the efficient experiment using the analysis results. Finally, we show the validity of the proposed method through the simulation results.

Experimental Study on Design Parameters of Explosive-driven High-intensity Flash Generator (폭발형 고섬광 발생장치의 설계 변수에 관한 실험적 연구)

  • Kim, Kyung Sik;Ahn, Jae-Woon;Yang, Hui-Won;Kwon, Mi-Ra
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.283-288
    • /
    • 2016
  • A non-lethal weapon is a device that can subdue targets without causing death or mortal wounds. A high-intensity flash generator can negate electro-optical sensors and cause temporal flash blindness with a high intensity of light. In this study, we derive the design parameters of an explosive-driven high-intensity flash generator that uses the interaction of plasma caused by the detonation of explosives with surrounding inert gas. To determine the design parameters of the flash generator, we analyze test results measured using optical sensors. The experimental results show that the light intensity of xenon gas is about four times higher than that of air. In addition, the intensity increases with the weight of the explosive, and the inert gas cross-sectional area encountered a shock wave in the airframe. The light intensity caused by a double-initiation generator is about two times higher than that of the single-initiation generator.

Study for the Design and Measurement of the High Voltage Pulse Generator Using Transformers (트랜스포머를 이용한 고전압 펄스 발생 장치의 설계와 측정평가에 관한 연구)

  • Kim, Young-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.82-86
    • /
    • 2012
  • High-capacity high-voltage pulse generator that can be used for environmental clean-up was developed using transformers. High-voltage pulse is consists of the primary wave and the harmonic wave which are increased as a series circuit using transformers to make pulses. Each transformer has a band-pass characteristics. The output voltage of the pulse width 50[%] was decided. The output voltage of high-voltage pulse generator device was measured as 1.4[kV] (Peak-to-Peak).

An Experimental Study for Predicting the Electric Power of the Coaxial Accelerator Type Wave Power Generator (동축 가속형 파력 발전장치의 전력량 예측을 위한 실험 연구)

  • Chung, Jaeho;Shin, Dong Min;Kim, Yuncheol;Moon, Byung Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.19-24
    • /
    • 2020
  • The interest in renewable energy is increasing due to the depletion of fossil fuels. In particular, active research on wave power, which is highly predictable and abundant, is being conducted. The coaxial accelerator-type wave power generator used in this study was designed to improve the power generation efficiency by converting bidirectional linear motion into a rotational force. In an offshore engineering basin, waves were generated, and case tests were performed according to the wave period and wave height. The experimental results were verified by the theoretical method related to the frequency response, and the overall trend was confirmed to be consistent. These results are expected to be useful in estimating the power of wave generators and designing parameters to improve the efficiency of wave energy in the design stage before manufacturing. In addition, the manufacturer can predict the wave energy efficiency of wave generators, which can reduce the development time and cost by preventing trial and error processes.

A study on Structure Design of Speed increaser Mechanism for Wave-Force Generator (파력발전기용 증속 기구의 구조 설계에 관한 연구)

  • 황정건;김봉주;신중호;권순만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1266-1269
    • /
    • 2004
  • With increasingly wide needs for a new energy source, many operation types of a wave-forced generation have been studied. To obtain an economically avaliable energy, it is imperative that the speed of the in put wave should be increased by a proper mechanism. In this study, we propose a new speed-increaser mechanism for the wave-force generation using a well-known Stephenson mechanism. In this paper, we have analysed kinematically the proposed speed-increasing mechanism. then a computer program based on the C++ language is developed to prove the validity of our mechanism and to simulate a wave-forced generation.

  • PDF

A Proof of Concept Investigation on a Pendular Power Take-Off System of Horizontal Wave Power Generator (수평파력 발전장치의 진자형 1차 에너지 추출 시스템에 대한 기초 모형실험 및 시뮬레이션)

  • Park, Yong-Kun;Lim, Chae Gyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.68-75
    • /
    • 2017
  • This paper presents the experimental and theoretical results of the dynamic responses of a pendular energy extractor in a two-dimensional wave channel. By adopting a wave maker with varying wave height and period, the dynamic responses of the pendular buoy were experimentally obtained. Furthermore, with the aid of the co-simulation of moving particle analysis and rigid dynamic analysis, the dynamic responses of the pendular system were evaluated. In order to validate the feasibility of the proposed wave power generator, the force tuning of the pendular system with restoring energy was carried out. The results provide proof of concept data for the development and design of a commercial model for horizontal wave power generators in the shoreline area.

A study on design and modeling of a Wave Energy Converter (파력발전기의 에너지 회생을 위한 연구)

  • Yoon, JongIl;Ahn, KyongKwan;Dinh, Quang Truong;Hoang, Huu Tien
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.167.2-167.2
    • /
    • 2011
  • Motions in nature, for example ocean wave, has been playing a significant role for generating electricity production in our modern life. This paper presents an innovative approach for electric power conversion of the vast ocean wave energy. Here, a floating-buoy wave energy converter (WEC) using hydrostatic transmission (HST), which is shortened as HSTWEC, is proposed and designed to enhance the wave energy harvesting task during all wave fluctuations. In this HSTWEC structure, the power take-off system (PTO) is a combination of the designed HST circuit and an electric generator to convert mechanical energy generated by ocean wave into electrical energy. Several design concepts of the HSTWEC have been considered in this study for an adequate investigation. Modeling and simulations using MATLAB/Simulink and AMESim are then carried out to evaluate these design concepts to find out the best solution. In addition, an adaptive controller is designed for improving the HSTWEC performance. The effectiveness of the proposed HSTWEC control system is finally proved by numerical simulations.

  • PDF