• 제목/요약/키워드: Wave force

검색결과 963건 처리시간 0.03초

이차원(二次元) 부유식(浮游式) 파랑발전기(波浪發電器)의 유체역학적(流體力學的) 특성(特性) (Hydrodynamic Characteristics of Two-dimensional Wave-energy Absorbers)

  • 김무현;최항순
    • 대한조선학회지
    • /
    • 제20권1호
    • /
    • pp.47-58
    • /
    • 1983
  • A study is made, in the framework of linear potential theory, to investigate the hydrodynamic characteristics of two-dimensional wave-energy absorbers as like the Salter's duck and an oscillating cam with Lewis-form section, which undergo uncoupled heaving and rolling motions in an incident linear gravity wave in deep water. Wave energy is supposed to be extracted by a linearly damped generator with an spring. Some well-known formulae in ship hydrodynamics such as Haskind-Newman relation and Bessho-Newman relation are utilized in forms of Kochin functions to derived expressions for efficiency, breaking effect and drift force of the absorber. Maximum ideal efficiency of 100% can be arrived at an prescribed tuning frequency. Coupling effect is also examined to assess the detrimental effect of sway on efficiency. From numerical calculations for both types of two-dimensional devices it may be concluded that a wave-energy absorber functions at the same time as a wave breaker and that the drift force acting on the device becomes smaller when it absorbs wave energy than as it oscillates freely. Finally the study is extended to an infinite array system, equivalent to a body in a canal, to show that all incident wave energy can be absorbed regardless of the absorber's size, only if the optimum space and the optimum condition of control are realized.

  • PDF

2축 힘센서를 이용한 스크레치 테스트 개발 (Development of a scratch tester using a two-component force sensor)

  • 김종호;박연규;이호영;박강식;오희근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1018-1021
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the horizontal forces simultaneously as the probe tip of the equipment approaches to the interface between thin film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ∼ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester. the feasibility test was performed to evaluate the adhesive strength of semiconductor wafer.

  • PDF

A second order analytical solution of focused wave group interacting with a vertical wall

  • Sun, Yonggang;Zhang, Xiantao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.160-176
    • /
    • 2017
  • The interaction of focused wave groups with a vertical wall is investigated based on the second order potential theory. The NewWave theory, which represents the most probable surface elevation under a large crest, is adopted. The analytical solutions of the surface elevation, velocity potential and wave force exerted on the vertical wall are derived, up to the second order. Then, a parametric study is made on the interaction between nonlinear focused wave groups and a vertical wall by considering the effects of angles of incidence, wave steepness, focal positions, water depth, frequency bandwidth and the peak lifting factor. Results show that the wave force on the vertical wall for obliquely-incident wave groups is larger than that for normally-incident waves. The normalized peak crest of wave forces reduces with the increase of wave steepness. With the increase of the distance of focal positions from the vertical wall, the peak crest of surface elevation, although fluctuates, decreases gradually. Both the normalized peak crest and adjacent crest and trough of wave forces become larger for shallower water depth. For focused wave groups reflected by a vertical wall, the frequency bandwidth has little effects on the peak crest of wave elevation or forces, but the adjacent crest and trough become smaller for larger frequency bandwidth. There is no significant change of the peak crest and adjacent trough of surface elevation and wave forces for variation of the peak lifting factor. However, the adjacent crest increases with the increase of the peak lifting factor.

규칙파중 수면 근처에 고정된 상자형 방파제의 특성에 관한 연구 (An Experimental and Numerical Study on the Characteristics of Pontoon Type Breakwater Fixed Near Free Surface in Regular Wave)

  • 송무석;김도영;이현엽;조일형
    • 대한조선학회논문집
    • /
    • 제35권2호
    • /
    • pp.38-50
    • /
    • 1998
  • 부유식 방파제의 특성을 파악하기 위하여 수면 근처에 고정된 상자형 방파제 경우의 방파성능을 실험하고 수치계산과 비교하였다. 상자의 폭과 흘수를 변화시키고 파의 주기와 경사도(wave steepness)를 변화시킴으로써 비교적 다양한 변수변화에 따른 영향을 확인하고자 하였다. 투과계수와 방파제에 작용하는 힘을 실험으로부터 측정하고 선형포텐셜이론에 의해 계산된 결과와 비교함으로써 방파제가 수면근처에 고정된 경우 투과계수와 파력에 대한 흘수 및 파장의 영향을 논하였다. 배열의 경우 폰툰사이의 간격이 투과계수와 파력에 미치는 효과를 논하였고, 전반적으로 계산이 실험의 결과를 효과적으로 예측할 수 있음을 확인하였다.

  • PDF

새로운 표면탄성파를 이용한 변형률 센서 개발 (Development of novel strain sensor using surface acoustic wave)

  • 오해관;황우진;은경태;좌성훈;이기근;양상식
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.594-599
    • /
    • 2011
  • A SAW strain sensor based on Shear Horizontal wave with an 92 MHz central frequency was developed. It consists of SAW sensor, PCB substrate and bonding material (Loctite 401). External force applied to PCB substrate bonded to a piezoelectric substrate induces strain at the substrate surface, which causes changes in the elastic constant and density of the substrate and hence the propagation velocity of the SAW. The change in the velocity of the SAW result in a frequency shift of the sensor and by measuring a frequency shift, we can extract the strain induced by the external force. The $41^{\circ}$ YX $LiNbO_3$ was used because it has a Leaky shear horizontal(SH) wave propagation mode and a high electromechanical coupling coefficient ($K^2$=17.2%). And to compare with Rayleigh wave mode, $128^{\circ}$ YX $LiNbO_3$ was used. And to make a stable and low insert loss, Split IDT structure was used. The obtained sensitivity and linearity of the SAW strain sensor in the case of Split IDT were measured to be 17.2 kHz / % and 0.99, respectively.

Effect of Wave Load on the Member Force of Steel Structure of Floating Buildings

  • Lee, Young-Wook;Park, Tae-Jun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1431-1439
    • /
    • 2018
  • For floating buildings may fl oat on the water for a long time, they are constantly affected by various environmental loads such as wind and wave loads. In this study to find the wave effect on the floating building, five models are designed using steel moment resisting frame. It is assumed that the lower part of the floating building is a reinforced concrete pontoon, while the upper part is a three-story steel frame. To analyze floating buildings affected by wind and wave loads, hydro-dynamic and substructure analysis are performed. As input loads, this study set limits that the mean wind velocity is 35 m/s and the significant wave height is 0.5 m for the residential building. From the hydrodynamic analysis, the time-history acceleration of building is obtained and transformed into a base ground input for a substructure analysis of the superstructure of the building. Finally the mean of the maximum from 30 dynamic analysis of the floating buildings are used to be compared with the results of the same model on the ground. It was shown that the dynamic results with wind and wave loads are not always lesser than the static results which are calculated with static equivalent wind load for a building that is located on the ground.

Performance of integrated vertical raft-type WEC and floating breakwater

  • Tay, Zhi Yung;Lee, Luke
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.39-61
    • /
    • 2022
  • Renewable energy such as wave energy has gained popularity as a means of reducing greenhouse gases. However, the high cost and lack of available sea space in some countries have hindered the deployment of wave energy converters (WEC) as alternative means of sustainable energy production. By combining WECs with infrastructures such as floating breakwaters or piers, the idea of electricity generated from WECs will be more appealing. This paper considers the integration of vertical raft-type WEC (commonly known as the vertical flap WEC) with floating breakwater as means to generate electricity and attenuate wave force in the tropical sea. An array of 25 WECs attached to a floating breakwater is considered where their performance and effect on the wave climate are presented. The effects of varying dimensions of the WEC and mooring system of the floating breakwater have on the energy generation are investigated. The integrated WECs and floating breakwater is subjected to both the regular and irregular waves in the tropical sea to assess the performance of the system. The result shows that the integrated vertical flap-floating breakwater system can generate a substantial amount of wave energy and at the same time attenuate the wave force effectively for the tropical sea when optimal dimensions of the WECs are used.

Coupled Motion Simulation of the Mobile Harbor and Anti-Rolling Devices in Waves

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun;Lew, Jae-Moon;Moon, Seok-Joon;Chung, Tae-Young
    • 한국항해항만학회지
    • /
    • 제34권4호
    • /
    • pp.271-279
    • /
    • 2010
  • The Mobile Harbor(MH) is a new transportation platform that can load and unload containers to and from very large container ships in the sea. This loading and unloading by crane can be performed with only very small movements of the MH in waves because MH is operated outside of the harbor. For this reason, an anti-rolling tank(ART) and an active mass driving system(AMD) were designed to reduce MH's roll motion, especially at the natural frequency of MH. In the conceptual design stage, it is difficult to confirm the design result of theses anti-rolling devices without modeling and simulation tools. Therefore, the coupled MH and anti-rolling devices' dynamic equations in waves were derived and a simulation program that can analyze the roll reduction performance in various conditions, such as sea state, wave direction, and so on, was developed. The coupled equations are constructed as an eight degrees of freedom (DOF) motion that consists of MH's six DOF dynamics and the ART's and AMD's control variables. In order to conveniently include the ART's and AMD's control dynamics in the time domain, MH's radiated wave force was described by an impulse response function derived by the damping coefficient obtained in the frequency domain, and wave exciting forces such as Froude-Krylov force and diffraction force and nonlinear buoyancy were calculated at every simulation time interval. Finally, the roll reduction performances of the designed anti-rolling devices were successfully assessed in the various loading and wave conditions by using a developed simulation program.

혼성제 직립벽에 작용하는 파력의 불확실성 해석 (Uncertainty Analysis of Wave Forces on Upright Sections of Composite Breakwaters)

  • 이철응
    • 한국해안·해양공학회논문집
    • /
    • 제23권3호
    • /
    • pp.258-264
    • /
    • 2011
  • 혼성제 케이슨에 작용하는 파력의 불확실성을 확률론적으로 해석할 수 있는 MCS 기법을 제시하였다. 수평파력 및 양력에 대한 확률론적 산정모형을 파력 산정에 사용되는 최대파고의 확률적 특성의 함수로 수립하였다. 파력이 극치분포를 따른다는 가정하에 Goda 식으로부터 산정된 수평파력과 양력에 대한 상대파력의 개념으로 파력의 거동특성을 해석하였다. 이중절단형 정규분포를 이용하는 MCS 기법을 이용하여 축척모수와 형상모수의 불확실성을 고려하였다. 최대설계파고의 초과확률에 따라 상대파력의 평균과 분산을 정량적으로 산정하였다. 해석 결과에 의하면 초과확률이 커짐에 따라 수평파력 및 양력에 대한 상대파력의 평균은 일정하게 감소된다. 특히 양력에 대한 상대 파력은 그 평균값이 수평파력의 평균보다 크고 변동계수는 작게 산정되었다. 이는 동일조건의 초과수준에서 양력에 대한 불확실성이 상대적으로 수평파력의 불확실성보다 작다는 것을 의미한다. 따라서 본 연구의 결과는 파력의 불확실성에 대한 통계적 거동특성을 요구하는 신뢰성 설계 등에서 유용하게 이용될 수 있다.

집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석 (Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model)

  • 오승훈;정재환;박병원;권용주;정동호
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.