• Title/Summary/Keyword: Wave field observation

Search Result 98, Processing Time 0.024 seconds

Evaluation of the Harbor Operation Rate Considering Long Period Waves (장주기파를 고려한 항만 가동율의 평가)

  • 김규한
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • In this study, the characteristics of long period waves are analyzed by field observation at Sokcho harbor on the eastern coast of Korea. firstly. the pressure data obtained from field observation are transformed into water surface elevations and the wave by wave analysis is applied to the observed wave data. also, we select long period waves by setting up the range 30-200sec, and suggest the relationship between ordinary waves and long period waves using the concept of the significant wave height. and, we examine the effects oft he long period waves on the rate of the harbor operation. The observation results demonstrate that the long period waves with heights of 1.2-14.6cm and periods of 35.8-162sec exist at Sokcho harbor. also, we found the rates of harbor operation based on long period waves are 61.8%-99.5% lower than the usual rates of 93.8%-100%.

Transition Characteristics of Long Period Waves by Field Observation (현장관측에 의한 장주기파의 천이특성)

  • 김규한;김덕중;류형석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.34-40
    • /
    • 2002
  • In order to estimate the height of long period wave from character of deep water wave, field observation is carried out three wave gauge are arranged by a straight line from the seashore to offshore direction and the result is analyzed. In addition, the existing theory of the mechanism for long period wave producer is verified by field observation, and the relation between deep water wave and long period wave of shallow area is examined. Observed long period wave is coincided with the existing theory for the most part. In order to add the change of time and space of long period wave, the height of long period wave is calculated by the composition of long period wave in each position. As a result, the relation of long period wave and deep water wave is presented more clear. Estimate formula is drew through them.

Field Observation on Wave Induced Liquefaction in Sea-bed and its Analysis (파랑에 의한 해저지반의 액상화에 관한 현지관측과 해석)

  • 이익효;선공기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.100-107
    • /
    • 1991
  • The purposes of this study are 1) to observe the wave-induced liquefaction in the oceanic seabed. 2) to verify the liquefaction theory proposed by the Authors. The study consists of the field observation and theoretical analysis on the wave-induced liquefaction. In the field observation. The sea bottom pressures. the fluctuating pore pressures and stresses in the seabed and the changes of the water depth were observed for two years. The liquefaction theory proposed by the Authors is verified by the comparing the calculated fluctuating pore pressures with those observed in the field.

  • PDF

Comparison of Observation Data between Local Waves in Gijang Sea and Donghae Buoy as Optimal Sites for the Wave Power Generation (파력발전 적지 기장 해역과 동해 해상부이 파랑관측치 비교)

  • Yoo, C.I.;Park, J.H.;Kim, H.T.;Yoon, H.S.;Yoon, S.J.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.166-174
    • /
    • 2009
  • Gijang Sea is located on the southeastern coast of Korea. This study establishes a basic system to identify optimal sites for the wave power generation. To achieve this goal, the field measurements were made at the field site in front of Dong-am fishing port at Gijang. In addition, we analyzed the offshore wave data at the Donghae buoy operated by Korea Meteorological Administration(KMA) and compared the data with the wave characteristics in Gijang Sea. The main results were as follows. In winter, the wave direction in Gijang Sea ranged between east and south($90{\sim}180^{\circ}$). The main wave direction was east($90^{\circ}$). The Significant wave heights and periods were under 2 m and $5{\sim}15$ sec, respectively. A comparison of water depth and wave direction constitutes one(condition) of the important parameters for selecting the optimal site for the wave power generation.

Study on Characteristics of Radiation Environment in the Urban through the Field Observation in the Summer (하절기 도시의 장.단파 복사특성 관측)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.105-110
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1) In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2) The upper part of atmosphere layers in the urban area absorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3) The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas.

  • PDF

Field Wave Data Analysis for Investigation of Freak wave Characteristics (Freak wave 특성 파악을 위한 파랑관측 자료의 분석)

  • Shin, Seung-Ho;Hong, Key-Yong;Moon, Jae-Seung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.175-180
    • /
    • 2006
  • This study is carried out the investigation of nonlinear characteristics of the ocean based on the field wave observation data acquired the western sea area in Jeju island during one year. It is aimed to offer the fundamental data for Freak wave forecasting in real sea. For this, the nonlinearity parameters of ocean waves, which are Skewness, Atiltness, Kurtosis and Spectrum band width parameter, are introduced, and the parameters are compared and discussed with some characteristic wave components, ie, significant wave height, maximum wave height, and so on.

  • PDF

Field Observation and Quasi-3D Numerical Modeling of Coastal Hydrodynamic Response to Submerged Structures

  • Yejin Hwang;Kideok Do;Inho Kim;Sungyeol Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.68-79
    • /
    • 2023
  • Even though submerged breakwater reduces incident wave energy, it redistributes the coastal area's wave-induced current, sediment transport, and morphological change. This study examines the coastal hydrodynamics and the morphological response of a wave-dominated beach with submerged breakwaters installed through field observation and quasi-3D numerical modeling. The pre-and post-storm bathymetry, water level, and offshore wave under storm forcing were collected in Bongpo Beach on the East coast of Korea and used to analyze the coastal hydrodynamic response. Four vertically equidistant layers were used in the numerical simulation, and the wave-induced current was examined using quasi-3D numerical modeling. The shore normal incident wave (east-northeast) generated strong cross-shore and longshore currents toward the hinterland of the submerged breakwater. However, the oblique incident wave (east-southeast) induced the southeastward longshore current and the sedimentation in the northeast area of the beach. The results suggested that the incident wave direction is a significant factor in determining the current and sediment transport patterns in the presence of the submerged breakwaters. Moreover, the quasi-3D numerical modeling is more appropriate for estimating the wave transformation, current, and sediment transport pattern in the coastal area with the submerged breakwater.

Field Observation and Numerical Modeling for Secondary Undulation (항만 부진동에 관한 현장관측 및 수치실험)

  • 김규한;김덕중;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2002
  • The purpose of this study is to investigate the variation of resonance that is possible caused by construction of new port in a practical sea area between the existing port and the new one. The research of amplification that of the sea area was accomplished for the variation of resonance. In this study, long period wave that is observed continuously in the practical sea area was analyzed, and then secondary undulation was reproduced by numerical analysis. As a result of numerical analysis, the first mode resonant periods in the existing port is 640sec, and in the new one is 500sec. On the other hand, we know there is long period wave of 500sec from analyzation of field datas. Because that period this period is the resonant period in the new port. There is also the possibility of secondary undulation cause of resonant.

A Study on the Methods to Improve High-Wave Reproducibility during Typhoon (태풍 내습 시의 고파 재현성 개선방안 연구)

  • Jong-Dai, Back;Kyong-Ho, Ryu;Jong-In, Lee;Weon-Mu, Jeong;Yeon-S., Chang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.177-187
    • /
    • 2022
  • This study estimates the design wave in the event of a typhoon attack at Busan new port using the wind field, the revised shallow water design wave estimation method proposed by the Ministry of Oceans and Fisheries in 2020, and proposed a reliable method of calculating the shallow water design through verification with the wave observation data. As a result of estimating typhoon wave using the wind field and SWAN numerical model, which are commonly used in the field work, for typhoon that affected Busan new port, it was found that reproducibility was not good except typhoons KONG-REY(1825) and MAYSAK(2009). In particular, in the case of typhoon MAEMI(0314), which had the greatest impact on Busan new port, the maximum significant wave height was estimated to be about 35.0% smaller than that of the observed wave data. Therefore, a plan to improve the reproducibility of typhoon wave was reviewed by applying the method of correcting the wind field and the method of using the Boussinesq equation numerical model, respectively. As a result of the review, it was found that the reproducibility of the wind field was not good as before when the wind field correction. However as a method of linking wind field data, SWAN model results, and Boussinesq numerical model, typhoon wave was estimated during typhoon MAEMI(0314), and the maximum significant wave was similar to the wave observations, so it was reviewed to have good reproducibility.

Sea State Hindcast for the Korean Seas With a Spectral Wave Model and Validation with Buoy Observation During January 1997

  • Kumar, B. Prasad;Rao, A.D.;Kim, Tae-Hee;Nam, Jae-Cheol;Hong, Chang-Su;Pang, Ig-Chan
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.7-21
    • /
    • 2003
  • The state-of-art third generation wave prediction model WAM was applied to the Korean seas for a winter monsoon period of January 1997. The wind field used in the present study is the global NSCAT-ERS/NCEP blended winds, which was further interpolated using a bi-cubic spline interpolator to fine grid limited area shallow water regime surrounding the Korean seas. To evaluate and investigate the accuracy of WAM, the hindcasted wave heights are compared with observed data from two shallow water buoys off Chil-Bal and Duk-Juk. A detailed study has been carried with the various meteorological parameters in observed buoy data and its inter-dependency on model computed wave fields was also investigated. The RMS error between the observation and model computed wave heights results to 0.489 for Chil-Bal and 0.417 for Duk-Juk. A similar comparison between the observation and interpolated winds off Duk-Juk show RMS error of 2.28 which suggest a good estimate for wave modelling studies.