• Title/Summary/Keyword: Wave direction measurement system

Search Result 38, Processing Time 0.027 seconds

A Study on Wave Observation System with GPS Arrayed Buoys by using MUSIC Method

  • Yoo, Yun-Ja;Song, Chae-Uk;Kouguchi, Nobuyoshi;Fujii, Hidenobu
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.677-682
    • /
    • 2003
  • The long-period gravity wave, the wave period from some ten seconds to some minutes, induces not only the big sway of a ship moored and berthed in the harbor due to the horizontal long-distance motion of a water but also strong exfoliated flow and vortices near the harbor entrance. They muse serious problems on the safety navigation of vessels entering and leaving the harbor, but this gravity wave has not been searched sufficiently yet. Then it is quite important to reveal the characteristics of this long-period gravity wave ana to solve various problems induced by this wave. The long-period gravity wave measurement system with arrayed buoys installed the kinematic GPS was already proposed, which provides the precise propagating direction of the long-period gravity wave. In this paper, the observation results of the wave measurement system are shown by the MUSIC method And the propagating wave direction was estimated precisely enough in comparison with other results used other method.

A study on the development of CW(Continuous-Wave) Doppler System using FFT (FFT를 이용한 연속초음파 도플러 장치에 관한 연구)

  • Lee, Dae-Hyung;Kang, Chung-Shin;Park, Sei-Hyun;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.709-712
    • /
    • 1988
  • Ultrasonic Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. CW(Continuous-Wave) Doppler System uses quadrature detection and phase rotation method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time-domain, had been fabricated. But time-domain analyzing such as audio evaluation and zero- crossing detection for instantaneous and mean frequnecy measurement do not provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency-domain technique to improve system performance. In this paper, we describe a unit which is composed of CW Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of Blood signal.

  • PDF

A Study on the Development of CW(Continuous-Wave)Doppler System for measuring Bi-directional Blood Flow Information (혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구)

  • 강충신;김영길
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1987
  • With the conventional CW Doppler velocity meter, bl-directional velocities cannot be separated. The new CW Doppler system uses quadrature detection and phase rotation to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, we can easily differentiate typical artery flow from vein flow, and measure both velocity characteristics qualitatively.

  • PDF

A Study on Rotation Method Appling Slip-ring of Direction Finding Antenna Mast for Mobile Radio Wave Measurement System (이동형 전파측정시스템에서 슬립링을 적용한 방향탐지 안테나 마스트 회전 방법에 관한 연구)

  • Sohn, Ju-Hang;Han, In-Sung;Kim, Duck-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.499-504
    • /
    • 2017
  • A Mobile Radio Wave Measurement System (MRWMS)is a vehicle-mounted system designed to be operating in a single mission. The mission characteristic for mobile measurement requires mobility. For this, we must consider the arrangement and embedded method of MRWMS's antennas. In this paper, we described the measurement method design of direction detecting accuracy for MRWMS and designed the direction finding antenna mast capable of rotating itself by using a slip ring without turntable for Direction Finding (DF) accuracy test. As we removed the dependency of a limited local area by designing a measurement method of direction detecting accuracy, Equipment Under Test (EUT) zero-Adjustment and mounted process shortened. So, we the reduced production costs. We expect an improved cable loss value by shortening the RF cable length in accordance with our design. In addition, due to the same phenomenon, the entire system is lighter and the mobility is improved.

A study on walking aids for the blind (시각장애자의 보행지원에 관한 연구)

  • Ham, K.K.;Han, S.H.;Yang, S.Y.;Kim, H.G.;Huh, W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.131-135
    • /
    • 1997
  • We implementated an ultrasonic wave cane for the blind. The cane detect walking obstacle and provide a walking direction. The cane used time of flight method of ultrasonic-wave for a measurement of obstacle distance and fluxgate geomagnetic sensor for guidance of walking direction. This system can detect an obstacle of upward, forward, downward and that warn to the blind with vibration, pitch sound. And the blind can know walking direction to voice output. As a result, the blind could efficiently avoid a exposed obstacle, obstacles beyond knee, an exposed street obstacle, a branch of tree person's height and it is usable search for surrounding land mark.

  • PDF

An Analysis of Error Components and Uncertainties in Near-field RCS Measurement (근전계 RCS 측정 오차 요인 및 불확도 분석)

  • Seo, Mingyeong;Tae, Hyunsung;Kim, Jeongkyu;Park, Homin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.346-354
    • /
    • 2020
  • Nowadays, it is required to apply low observable technology to weapon systems in operation or under development. Radar Cross Section(RCS) is a measure of the scattered power in an given direction when a target is illuminated by an incident wave and used as a parameter to estimate the low observable performance of weapon system. RCS of a target can be calculated by various numerical methods. However, measurement is also needed to estimate RCS of a complex target because it is difficult to estimate theoretically. To acquire reliable measurement results, an analysis of measurement uncertainty is essential. In this paper, error components and uncertainties of near-field RCS measurement system which was constructed in ASTEC(Aerospace System Test & Evaluation Center) were analyzed based on the IEEE recommended practice for radar cross-section test procedures(IEEE Std. 1502-2007) which describes the uncertainty of RCS measurement and unique error components of this near-field measurement system were also identified.

Influence of Streamwise Vortices on Normal Shock-Wave/Boundary Layer Interaction (유동방향의 와류가 충격파와 경계층의 상호간섭에 미치는 영향)

  • ;R. Szwaba
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.91-94
    • /
    • 2003
  • An experimental study has been carried out in a supersonic blow-down wind tunnel for examining the influence of streamwise vortices on normal shock-wave/boundary layer interaction. It has been reported by the earlier investigator the streamwise vortices generated by the blowing jets can significantly suppress the shock-induced separation and reduce the wave drag. The blowing jets generate the streamwise vortices with 45$^{\circ}$ angle in the spanwise direction. The shock waves are visualized by a Schlieren optical system. Appropriate measurement systems are provided for the characterization of shock wave/boundary layer interaction. The chamber pressure ratio and blowing pressure ratio are varied from 1.5 to 2.4 and 1.0 to 2.0 respectively.

  • PDF

Field Comparison of Different Types of Sea-Bed Installed Directional Wave Gauges

  • Nagai, Toshihiko;Hashimoto, Noriaki;Lohrmann, Atle;Mitsui, Masao;Konashi, Shoichiro
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.35-43
    • /
    • 2003
  • Methods for measuring wave height and direction varies throughout the world, depending on wave climate and local traditions. In Japan, bottom mounted systems have long been the standard fur coastal areas with water depth less than 50m, and extensive studies in the 1980s and 1990s refined the systems to a level where the full wave directional spectrum could be measured. (omitted)

  • PDF

Measurement of Sonobuoy Transmitting Antenna System for Anti-Submarine Warfare

  • Min Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • This paper describes the measured results of sonobuoy transmitting antenna system for anti-submarine warfare (ASW). Since radiation pattern and power density depend on impedance matching between transmitting RF part and antenna with termination resistance, design of matching circuit is very important for sonobuoy system performance. Matching circuit is designed by Smith chart using control of L and C. In standing wave ratio(SWR) measurement using Network Analyzer, SWR of antenna with matching circuit observed 1.5 below at the assigned VHF band. It shows very excellent performance comparison with conversional product that is used for the same object. The measured vertical and horizontal radiation patterns are also shown the satisfaction of military specifications. A drop out of sonobuoy system on the sea is happened when angle of elevation direction is over 10 degrees, and it is conformed that it takes less than I second return to original signal level. The required electric power density is $83\;mW/m^2$ in the military specification, and measured electric power density is observed over average $110\;mW/m^2$ at all frequency bands.

A study on the development of CW(Continuous-Wave) Doppler system for measuring bi-directional blood flow information. (혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구)

  • Kang, Chung-Sin;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1239-1242
    • /
    • 1987
  • With the convention CW Doppler velocity meter, bi-directional velocities cannot be separated. The new CW Doppler system usee quadrature detection and phase rotation to Produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, can easily differentiate typical artery flow from vein flow. and measure both velocity characteristics qualitatively.

  • PDF