• Title/Summary/Keyword: Wave direction information

Search Result 159, Processing Time 0.02 seconds

앞전에서의 팽창파를 이용한 양항비의 개선에 대한 연구

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.19-22
    • /
    • 2016
  • Leading edge thrust is generally caused by passing air flow from lower to upper surface and it is required to have sufficient angle of attack for notable leading edge thrust. To produce leading edge thrust at low angle of attack, utilizing expansion wave accompanying low pressure is able to be a solution. Fore structure changes the direction of flow, and this flow passes the projected edge. As a result, from a perspective of the edge, it is able to have high angle of attack, and artificial expansion wave is generated. This concept shows 9.48% increase of L/D in inviscid flow, at Mach number 1.3 and angle of attack $1^{\circ}$ in maximum, and this model shows the 3.98% of increasement at angle of attack $2^{\circ}$. Although advantage of the artificial expansion wave decreased as angle of attack increase, it shows the possibility of aerodynamical improvement with artificial expansion wave.

  • PDF

Sound Propagation in 5CB Liquid Crystals Homogeneously Confined in a Planar Cell

  • Ko, Jae-Hyeon;Hwang, Yoon-Hwae;Kim, Jong-Hyun
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.72-75
    • /
    • 2009
  • The Brillouin spectrum of 4'-n-pentyl-4-cyano-biphenyl (5CB) liquid crystals homogeneously confined in a planar liquid crystal (LC) cell was measured using a 6-pass tandem Fabry-Perot interferometer. By adopting a special right-angle scattering geometry, the sound velocity of 5CB was estimated from the Brillouin shift without knowing the refractive index. The sound velocity of the longitudinal wave propagating along the direction of the directors aligned parallel to the glass plates of the LC cell was 1784${\pm}$7 m/s at 300 K. The attenuation coefficient $\alpha$ was estimated to be approximately $1.9{\times}10^6m^{-1}$, which is about twice as large as that of the longitudinal sound wave propagating along the direction perpendicular to the directors. The present method may be very useful in the evaluation of the elastic properties of the materials used in display devices, whose refractive indices are not known.

A Study on the Development of CW(Continuous-Wave)Doppler System for measuring Bi-directional Blood Flow Information (혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구)

  • 강충신;김영길
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1987
  • With the conventional CW Doppler velocity meter, bl-directional velocities cannot be separated. The new CW Doppler system uses quadrature detection and phase rotation to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, we can easily differentiate typical artery flow from vein flow, and measure both velocity characteristics qualitatively.

  • PDF

Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves (다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-595
    • /
    • 2007
  • The analytic solution of wave scattering of monochromatic waves on a pile breakwater by an eigenfunction expansion method is extended to the case of directional irregular waves. The scattering wave spectrum and the force spectrum can be expressed from the reflection coefficient, transmission coefficient and the wave forces obtained from changing frequencies and incident angles in monochromatic waves. By numerical integration of 2-dimensional spectrum which is function of frequencies and incident angles, the representative values for the scattered waves and wave forces are obtained and the dependence of the transmission coefficients and wave forces on the directional distribution function, the principal wave direction, the submergence depth, and porosity is analyzed.

Developement of Efficient Algorithm to Eliminate Aliasing of Ultrasonic Pulsed Wave Doppler Signal (초음파 Pulsed Wave 도플러 신호의 Aliasing 제거를 위한 효율적인 알고리즘 개발)

  • Kim, G.D.;Hwang, J.S.;Ahn, Y.B.;Song, T.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.213-214
    • /
    • 1998
  • The important role of the ultrasonic Doppler system in the modem clinical medicine is to provide the clinical information of the vascular system. The ultrasonic pulsed wave(PW) Doppler system, a kind of the ultrasound Doppler system, is more available than the ultrasonic continuous wave(CW) Doppler system because it can evaluate the velocity and the direction of blood flow as well as the depth of vessel. However, the ultrasonic PW Doppler system has the disadvantage that the range of evaluating velocity of blood flow is limited(Nyquist limit). In order to solve this limit, we propose the algorithm for eliminating this aliasing in this paper. In addition, we propose the efficient signal processing algorithm.

  • PDF

Field Comparison of Different Types of Sea-Bed Installed Directional Wave Gauges

  • Nagai, Toshihiko;Hashimoto, Noriaki;Lohrmann, Atle;Mitsui, Masao;Konashi, Shoichiro
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.35-43
    • /
    • 2003
  • Methods for measuring wave height and direction varies throughout the world, depending on wave climate and local traditions. In Japan, bottom mounted systems have long been the standard fur coastal areas with water depth less than 50m, and extensive studies in the 1980s and 1990s refined the systems to a level where the full wave directional spectrum could be measured. (omitted)

  • PDF

An anisotropic ultrasonic transducer for Lamb wave applications

  • Zhou, Wensong;Li, Hui;Yuan, Fuh-Gwo
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1055-1065
    • /
    • 2016
  • An anisotropic ultrasonic transducer is proposed for Lamb wave applications, such as passive damage or impact localization based on ultrasonic guided wave theory. This transducer is made from a PMNPT single crystal, and has different piezoelectric coefficients $d_{31}$ and $d_{32}$, which are the same for the conventional piezoelectric materials, such as Lead zirconate titanate (PZT). Different piezoelectric coefficients result in directionality of guided wave generated by this transducer, in other words, it is an anisotropic ultrasonic transducer. And thus, it has different sensitivity in comparison with conventional ultrasonic transducer. The anisotropic one can provide more information related to the direction when it is used as sensors. This paper first shows its detailed properties, including analytical formulae and finite elements simulations. Then, its application is described.

High-gain polarization conversion metasurface

  • Chen, Aixin;Ning, Xiangwei;Liu, Xin;Zhang, Zhe
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • A novel analytical method based on the cavity mode theory to design a metasurface (MS) is proposed in this study. We carefully analyzed the phase and amplitude characteristics of the incident wave and transmitted wave, and successfully designed a circular polarization conversion MS by introducing a cutting structure with wider operation bandwidth and higher radiation direction gain compared with that of the original MS. For the measurements, a microstrip antenna operating at 2.4 GHz was used as the source antenna to verify the designed MS. The simulation and measurement results agree well with each other.

A Technology of Microwave Direction Finding with Circular Array Combination Method (원형 배열 복합 방식을 이용한 초고주파 방향 탐지 기술)

  • Lim Joong-Soo;Jung Chul-Gu;Chae Gyoo-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.549-555
    • /
    • 2005
  • This paper describes a microwave direction finding technology which is used for RF signal acquisition and monitoring systems. This paper suggests a direction finding method which use a combination of the amplitude-comparison technology and the phase-comparison technology. The amplitude-comparison technology uses the amplitude difference of the RF signals received from the array antennas of direction finding system and removes the ambiguity of wave incident bearing. The phase-comparison technology uses the phase difference of the RF signals received from the same nay antennas and makes a good direction finding accuracy. The suggested direction finding technology is designed to place 8 array antennas in a $45^{\circ}$ distance around the circle for $360^{\circ}$ azimuth angle. Also it is designed to use the phase difference of the received signals ken two nearby antennas to measure the signal incident direction accurately and to use the amplitude difference to remove the ambiguity of wave incident bearing. The simulation and measurement results are under $0.5^{\circ}$ bearing error in $2.0\~6.0$ GHz when SNR is 30 dB.

Estimation of Design Wave Height for the Waters around the Korean Peninsula

  • Lee, Dong-Young;Jun, Ki-Cheon
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.245-254
    • /
    • 2006
  • Long term wave climate of both extreme wave and operational wave height is essential for planning and designing coastal structures. Since the field wave data for the waters around Korean peninsula is not enough to provide reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. Basic data base of hindcasted wave parameters such as significant wave height, peak period and direction has been established continuously for the period of 25 years starting from 1979 and for major 106 typhoons for the past 53 years since 1951 for each grid point of the North East Asia Regional Seas with grid size of 18 km. Wind field reanalyzed by European Center for Midrange Weather Forecasts (ECMWF) was used for the simulation of waves for the extra-tropical storms, while wind field calculated by typhoon wind model with typhoon parameters carefully analyzed using most of the available data was used for the simulation of typhoon waves. Design wave heights for the return period of 10, 20, 30, 50 and 100 years for 16 directions at each grid point have been estimated by means of extreme wave analysis using the wave simulation data. As in conventional methodsi of design criteria estimation, it is assumed that the climate is stationary and the statistics and extreme analysis using the long-term hindcasting data are used in the statistical prediction for the future. The method of extreme statistical analysis in handling the extreme vents like typhoon Maemi in 2003 was evaluated for more stable results of design wave height estimation for the return periods of 30-50 years for the cost effective construction of coastal structures.