Sound Propagation in 5CB Liquid Crystals Homogeneously Confined in a Planar Cell

  • Published : 2009.06.30

Abstract

The Brillouin spectrum of 4'-n-pentyl-4-cyano-biphenyl (5CB) liquid crystals homogeneously confined in a planar liquid crystal (LC) cell was measured using a 6-pass tandem Fabry-Perot interferometer. By adopting a special right-angle scattering geometry, the sound velocity of 5CB was estimated from the Brillouin shift without knowing the refractive index. The sound velocity of the longitudinal wave propagating along the direction of the directors aligned parallel to the glass plates of the LC cell was 1784${\pm}$7 m/s at 300 K. The attenuation coefficient $\alpha$ was estimated to be approximately $1.9{\times}10^6m^{-1}$, which is about twice as large as that of the longitudinal sound wave propagating along the direction perpendicular to the directors. The present method may be very useful in the evaluation of the elastic properties of the materials used in display devices, whose refractive indices are not known.

Keywords

References

  1. K. Miyano and J. B. Ketterson, Physical Acoustics Vol. XIV (Academic Press, New York, 1979), p.93
  2. B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley and Sons, New York, 1975)
  3. H. Z. Cummins and R. W. Gammon, J. Chem. Phys. 44, 2785 (1966) https://doi.org/10.1063/1.1727126
  4. J. R. Sandercock, Light Scattering in Solids III, edited by M. Cardona and G. Guntherodt (Springer, Berlin 1982) p.173
  5. J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bistol and Philadelphia, 1989)
  6. J. -H. Ko, D. H. Kim and S. Kojima, J. Kor. Phys. Soc. 49, S536 (2006)
  7. J.-H. Ko and S. Kojima, Rev. Sci. Instrum. 73, 4390 (2002) https://doi.org/10.1063/1.1516847
  8. K. J. Koski, J. Muller, H. D. Hochheimer and J. L. Yarger, Rev. Sci. Instrum. 73, 1235 (2002) https://doi.org/10.1063/1.1445869
  9. J. -H. Ko and S. Kojima, J. Kor. Phys. Soc. 47, S271 (2005) https://doi.org/10.3938/jkps.47.271
  10. S. Nagai, P. Mortinoty and S. Candau, J. Physique 37, 769 (1976) https://doi.org/10.1051/jphys:01976003706076900
  11. J. M. Vaughan, Phys. Lett. 58A, 325 (1976)
  12. G. W. Bradberry and C. F. Clarke, Phys. Lett. 95A, 305 (1983)
  13. C. Grammes, J. K. Kruger, K. -P. Bohn, J. Baller, C. Fischer, C. Schorr, D. Rogez and P. Alnot, Phys. Rev. E 51, 430 (1995)
  14. J. K. Krüger, C. Grammes, R. Jiménez, J. Schreiber and K. -P. Bohn, Phys. Rev E 51, 2115 (1995)
  15. R. Harley, D. James, A. Miller and J.W. White, Nature 267, 285 (1977) https://doi.org/10.1038/267285a0
  16. G. Maret, R. Oldenbourg, G. Winterling, K. Dransfeld and A. Rupprecht, Colloid Polymer Sci. 257, 1017 (1979) https://doi.org/10.1007/BF01761112
  17. S. Sen, P. Brahma, S. K. Roy, D. K. Mukherjee and S. B. Roy, Mol. Cryst. Liq. Cryst. 100, 327(1983) https://doi.org/10.1080/00268948308075361