• Title/Summary/Keyword: Wave buoy

Search Result 187, Processing Time 0.027 seconds

A study on design and modeling of a Wave Energy Converter (파력발전기의 에너지 회생을 위한 연구)

  • Yoon, JongIl;Ahn, KyongKwan;Dinh, Quang Truong;Hoang, Huu Tien
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.167.2-167.2
    • /
    • 2011
  • Motions in nature, for example ocean wave, has been playing a significant role for generating electricity production in our modern life. This paper presents an innovative approach for electric power conversion of the vast ocean wave energy. Here, a floating-buoy wave energy converter (WEC) using hydrostatic transmission (HST), which is shortened as HSTWEC, is proposed and designed to enhance the wave energy harvesting task during all wave fluctuations. In this HSTWEC structure, the power take-off system (PTO) is a combination of the designed HST circuit and an electric generator to convert mechanical energy generated by ocean wave into electrical energy. Several design concepts of the HSTWEC have been considered in this study for an adequate investigation. Modeling and simulations using MATLAB/Simulink and AMESim are then carried out to evaluate these design concepts to find out the best solution. In addition, an adaptive controller is designed for improving the HSTWEC performance. The effectiveness of the proposed HSTWEC control system is finally proved by numerical simulations.

  • PDF

The Application of Marine X-band Radar to Measure Wave Condition during Sea Trial

  • Park, Gun-Il;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun;Jang, Hyun-Sook;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.34-48
    • /
    • 2006
  • The visual observation of wave condition depends on the observer's skill and experience. Also, the environmental conditions such as light and cloud heavily influence the visual measurement. In the speed test of sea trial, the wave measurement should be objective and accurate. In this paper, the problems of visual measurement and their effects on speed test are described. To overcome those problems, we developed the wave measurement system using commercial marine X-band radar, WaveFinder. The system installed at inland base was calibrated by waverider buoy and then the system's operability was defined. Onboard tests had also been performed three times for formal wave measurement to correct the ship speed. The results illustrated very good agreement with visual observation by experts. It can be concluded that the system would be useful to measure wave and swell information for the sea trial, irrespective of day and night.

Investigation of Characteristics of Rip Current at Haeundae Beach based on Observation Analysis and Numerical Experiments (관측자료 분석과 수치모의에 의한 해운대 이안류 발생 특성 연구)

  • Yoon, Sung Bum;Kwon, Seok Jae;Bae, Jae Soek;Choi, Junwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.243-251
    • /
    • 2012
  • To investigate the characteristics of rip current occurring at Haeundae beach, observations obtained from a buoy and a CCTV were analyzed and numerical experiments were conducted. During observed rip-current events, the CCTV images showed that a couple of wave-trains, which are close to regular waves with slightly different directions, propagated to the beach, and wavelet analyses of data from the buoy showed very narrow-banded spectra with a peak frequency. From the evidences, it was inferred that a known mechanism of generating rip current due to the nodal line area of honeycomb-patterned wave crest was one of the significant factors of rip current occurrences of Haeundae beach. The mechanism has been explained by the following: When two wave-trains with slightly different directions propagate to a beach, wave crests of the incident wave-trains form honeycomb pattern due to nonlinear interaction. The nodal lines of honeycomb pattern are developed in the cross-shore direction. And longshore currents flow toward the nodal line area which has very low wave energy. Consequently their mass flux is expelled through the area toward the sea direction. To confirm the generation, numerical experiments were performed using a nonlinear Boussinesq equation model. In the cases with two incident wave-trains with slightly different directions and with a monochromatic wave propagating over a submerged shoal, it was seen that the honeycomb pattern of wave crests was well developed, and thus rip currents were evolved along the nodal lines.

Performance Improvement of Wave Information Retrieval Algorithm Using Noise Reduction

  • Lee, Byung-Gil;Lim, Dong-hee;Kim, Jin-soo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.175-181
    • /
    • 2017
  • This paper describes the upgrade of an existing wave information retrieval algorithm by employing noise reduction in the pixel domain. Several algorithms for collecting wave information parameters from X-band radar image sequences including the wind field and current velocity have been developed over the past three decades. Using these algorithms, a band-pass filter (BPF) is applied to remove the non-wave contribution from the image spectra after the sea surface current velocity has been computed. However, such BPF designs have been both complex and insufficient in removing undesired components in X-band radar images. For this study, to improve the performance of wave information retrieval, an efficient noise reduction algorithm is incorporated into a regular wave information retrieval process. That is, the proposed algorithm was designed for operation in a more proper manner by effectively removing the undesired components in the pixel domain. Experiment results demonstrate that the proposed algorithm produces very close estimates to the buoy data records under undesirable noise conditions.

Comparison of Wave Prediction and Performance Evaluation in Korea Waters based on Machine Learning

  • Heung Jin Park;Youn Joung Kang
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.18-29
    • /
    • 2024
  • Waves are a complex phenomenon in marine and coastal areas, and accurate wave prediction is essential for the safety and resource management of ships at sea. In this study, three types of machine learning techniques specialized in nonlinear data processing were used to predict the waves of Korea waters. An optimized algorithm for each area is presented for performance evaluation and comparison. The optimal parameters were determined by varying the window size, and the performance was evaluated by comparing the mean absolute error (MAE). All the models showed good results when the window size was 4 or 7 d, with the gated recurrent unit (GRU) performing well in all waters. The MAE results were within 0.161 m to 0.051 m for significant wave heights and 0.491 s to 0.272 s for periods. In addition, the GRU showed higher prediction accuracy for certain data with waves greater than 3 m or 8 s, which is likely due to the number of training parameters. When conducting marine and offshore research at new locations, the results presented in this study can help ensure safety and improve work efficiency. If additional wave-related data are obtained, more accurate wave predictions will be possible.

Development of Small Wave Power Controller for Ocean Facilities (해양 시설물용 소형 파력발전 전력제어기 개발)

  • Jo, Kwan-Jun;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.835-841
    • /
    • 2011
  • Wave power generation systems operated in the ocean, has been developed as large power and grid power connection systems in general. However, small wave power generation systems offer operational efficiency for the lighted (navigation aids) buoy. They simply adopts a full-wave rectification for charging battery (direct connection method). In this paper, a wave power controller based on a booster converter is developed by considering a characteristic of the wells turbine. Both direct connection and booster converter power controller is designed and tested to compare the characteristics. Experiments demonstrate that the output of the proposed controller has improved the characteristic of output power, when generator output voltage is low.

Quality Enhancement of Wave Data Observed by Radar at the Socheongcho Ocean Research Station (소청초 종합해양과학기지 Radar 파랑 관측 데이터의 신뢰도 향상)

  • Min, Yongchim;Jeong, JinYong;Shim, Jae-Seol;Do, Kideok
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Ocean Research Stations (ORSs) is the ocean platform type observation towers and measured oceanic, atmospheric and environmental data. These station located on the offshore area far from the coast, so they can produce the data without land effect. This study focused to improve the wave data quality of ORS station. The wave observations at ORSs are used by the C-band (5.8 GHz, 5.17 cm) MIROS Wave and Current Radar (MWR). MWR is convenient to maintenance and produce reliability wave data under bad weather conditions. MWR measured significant wave height, peak wave period, peak wave direction and 2D wave spectrum, so it's can provide wave information for researchers and engineers. In order to improve the reliability of MWR wave data, Datawell Waverider Buoy was installed near the one ORS (Socheoncho station) during 7 months and validate the wave data of MWR. This study found that the wave radar tend to be overestimate the low wave height under wind condition. Firstly, this study carried out the wave Quality Control (QC) using wind data, however the quality of wave data was limited. So, this study applied the four filters (Correlation Check, Direction Filter, Reduce White Noise and Phillips Check) of MWR operating software and find that the filters effectively improve the wave data quality. After applying 3 effective filters in combination, the RMSE of significant wave height decreased from 0.81m to 0.23m, by 0.58m and Correlation increased from 0.66 to 0.96, by 0.32, so the reliability of MWR significant wave height was significantly improved.

A Study on the Estimation of Air-Sea Heat Fluxes and the Wave Characteristics using Chilbaldo Buoy Data (칠발도 Buoy자료를 이용한 해양-대기 열교환량 산출 및 파랑 특성에 관한 연구)

  • Youn, Yong-Hoon;Hong, Sung-Gil;Hong, Yoon;Lee, Ji-Yeon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • Hourly meteorological data from a marine buoy ($34^{\circ}49'00"N$, $125^{\circ}46'00"E$) operated by the Korean Meteorological Agency were obtained from July, 1996 to February, 1997. From the data air-sea heat fluxes and marine meteorological characteristics around the area are estimated. The maximum outflux of sensible heat from the sea surface occurred in January (monthly mean value, 12.6 $Wm^{-2}$ and the maximum influx to the sea occurred in July (monthly mean value, 5.5 $Wm^{-2}$). This means that the sea is heated in summer while it loses its heat in winter, and that there is inequality between the absolute values of the two seasons. The outflux of the maximum latent heat occurred in November (monthly mean value, 86.5 $Wm^{-2}$) and reach a value of 300 $Wm^{-2}$, and the maximum influx occurred in July (monthly mean value, 4.6 $Wm^{-2}$). Big difference is shown in their absolute values when the wind becomes strong. The outgoing latent heat flux reaches its maximum in autumn, and it maintains the high value through the whole winter. According to the wave data analysis, the significant wave heights are larger in winter than in summer. The periods of the significant waves are 4~6 sec. In winter, waves propagated from north and northeast are dominant because of the winter monsoon, while in summer waves from south, southwest, and west are relatively frequent.

  • PDF

A Study on Improvement of Wave Height Algorithm using Accelerometer (가속도계를 이용한 파고 알고리즘 개선에 관한 연구)

  • Chung, Dong-Keun;Lim, Myung-Jae;Lee, Joon-Taik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.215-220
    • /
    • 2014
  • Most of studies on wave height algorithms that are using at buoys describe algorithms using double integral to determine the position data from the acceleration data measured from the accelerometer. but sometimes, it can involve some cumulative error in that process, and result in misjudgment or unstabe system. On the other hand, It is widely known that the motion of fluid particles on or underneath a linear progressive wave is periodic and elliptic. This fact is considered in this article and leads a improved algorithms with no integral processing.

Development of a Wave Monitoring System Using a Marine Radar (항해용 레이더를 이용한 파랑 모니터링 시스템 개발)

  • PARK JUN-SOO;PARK SEUNG-GEUN;KWON SUN-HONG;PARK GUN-IL;CHOI JAE-WOONG;KANG YUN-TAE;HA MUN-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.37-42
    • /
    • 2006
  • In the ocean engineering field, information about the ocean environment is important for planning, design, and operation, especially the wave information. High precision wave data is also important for considering environmental problems, like efficient operation of ships. For this purpose, many methods were considered in the past. However, an on-board directing wave measurement system has not been incorporated. The use of conventional marine radar Plane Position Indicator (PPI) images allows the estimation of wave information on a real-time basis, using both space and time information, regarding the evolution of ocean surface waves. In order to achieve data acquisition, the Radar Scan Converter (RSC) has been developed. Three-dimensional analysis was performed. The comparison of wave information derived from this system, and that of wave buoy, shows that this wave field detecting system can be a useful tool.