DOI QR코드

DOI QR Code

Investigation of Characteristics of Rip Current at Haeundae Beach based on Observation Analysis and Numerical Experiments

관측자료 분석과 수치모의에 의한 해운대 이안류 발생 특성 연구

  • 윤성범 (한양대학교 공학대학 건설환경공학과) ;
  • 권석재 (국토해양부 국립해양조사원 해양조사연구실) ;
  • 배재석 (한양대학교 대학원 건설환경공학과) ;
  • 최준우 (한국건설기술연구원 하천해안연구실)
  • Received : 2012.05.04
  • Accepted : 2012.05.24
  • Published : 2012.07.15

Abstract

To investigate the characteristics of rip current occurring at Haeundae beach, observations obtained from a buoy and a CCTV were analyzed and numerical experiments were conducted. During observed rip-current events, the CCTV images showed that a couple of wave-trains, which are close to regular waves with slightly different directions, propagated to the beach, and wavelet analyses of data from the buoy showed very narrow-banded spectra with a peak frequency. From the evidences, it was inferred that a known mechanism of generating rip current due to the nodal line area of honeycomb-patterned wave crest was one of the significant factors of rip current occurrences of Haeundae beach. The mechanism has been explained by the following: When two wave-trains with slightly different directions propagate to a beach, wave crests of the incident wave-trains form honeycomb pattern due to nonlinear interaction. The nodal lines of honeycomb pattern are developed in the cross-shore direction. And longshore currents flow toward the nodal line area which has very low wave energy. Consequently their mass flux is expelled through the area toward the sea direction. To confirm the generation, numerical experiments were performed using a nonlinear Boussinesq equation model. In the cases with two incident wave-trains with slightly different directions and with a monochromatic wave propagating over a submerged shoal, it was seen that the honeycomb pattern of wave crests was well developed, and thus rip currents were evolved along the nodal lines.

국립해양조사원의 해운대 부이로 부터 관측된 자료와 CCTV 영상자료를 분석하고 수치실험을 수행하여 해운대 해변에서 발생하는 이안류의 특성을 연구하였다. CCTV 영상자료를 분석한 결과로 부터 이안류가 발생할 때 규칙파에 가깝고 진행방향이 약간 다른 파랑이 중첩되어 입사되고 있는 것을 관찰할 수 있었으며, 부이 관측자료의 웨이브릿 분석으로부터 한 주기에 파랑에너지가 집중된 협대역 스펙트럼을 확인할 수 있었다. 이로부터 이미 알려진 이안류 발생 메커니즘가운데 하나인 벌집구조의 절점선 영역을 통한 이안류의 발생이 해운대 이안류의 주요한 발생 메커니즘임을 추론할 수 있었다. 이러한 이안류 발생 메커니즘은 다음과 같이 설명할 수 있다. 진행방향이 약간 다른 규칙파가 해안으로 전파될 때 서로 중첩되어 비선형 상호작용으로 파봉선이 벌집구조 형상으로 변형된다. 여기서, 파고가 영(zero)인 절점선이 해안선에서 외해방향으로 발달하게 된다. 파고가 상대적으로 작은 이 절점선 영역을 향하여 연안류의 질량수송이 집중되며 일시에 외해로 이안류를 발생시키게 된다. 벌집구조 파봉형상 입사파에 의한 이안류 발생을 재현하기 위해 완전 비선형 Boussinesq 방정식 모형을 이용해 수치모의를 수행하였다. 이 수치모의로부터 진행방향이 서로 다르므로, 그리고 일방향 파랑이 수중천퇴에 의하여 변형되므로 발생된 벌집구조 현상에 의하여 이안류가 잘 발생함을 확인하였다.

Keywords

References

  1. 김인철, 이주용, 이정렬(2011) 해운대 해수욕장의 이안류 발생기구 및 수치모의. 한국해안.해양공학회논문집, 한국해안.해양공학회, 제23권 제1호, pp. 70-78.
  2. 이종인, 윤성범(2006) 직립벽을 따른 연파의 수리 및 수치실험. 대한토목학회 논문집, 대한토목학회, 제26권 제4호, pp. 405-412.
  3. 최준우, 박원경, 윤성범 (2011) Boussinesq 방정식 모형을 이용한 해운대 이안류 수치모의. 한국해안.해양공학회논문집, 한국해안.해양공학회, 제23권 제4호, pp. 276-284.
  4. Bowen, A. (1969) Rip currents 1. Theoretical investigations. J. Geophys. Res., 74(23), pp. 5479-5490. https://doi.org/10.1029/JC074i023p05479
  5. Bowen, A. and Inman, D. (1969) Rip currents 2. Laboratory and field observations. J. Geophys. Res., 74(C3), pp. 5479-5490. https://doi.org/10.1029/JC074i023p05479
  6. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., and Thornton, E.B. (2003). Boussinesq modeling of longshore current. J. of Geophys. Res., 108(C11), 26-1-26-18.
  7. Dalrymple, R.A. (1975) A mechanism for rip current generation on an open coast. J. Geophys. Res., 80, pp. 3485-3487. https://doi.org/10.1029/JC080i024p03485
  8. Dalrymple, R.A. (1978) Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, pp. 1414-1427.
  9. Dalrymple, R.A. and Lozano, C.J. (1978) Wave-current interactionmodel for rip currents. J. Geophys. Res., 83, pp. 6063-6071. https://doi.org/10.1029/JC083iC12p06063
  10. Dalrymple, R.A., MacMahan, J.H., Reniers, A.J.H.M., and Nelko, V. (2011) Annu. Rev. Fluid Mech., 43, 551-581. https://doi.org/10.1146/annurev-fluid-122109-160733
  11. Hammack, J., Scheffner, N., and Segur, H. (1990). A note on the generation and narrowness of periodic rip currents. J. Geophys. Res., 96(C3), pp. 4909-14.
  12. Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A. (1998) FUNWAVE 1.0, Fully nonlinear Boussinesq wave model. Documentation and user's manual, Report CACR-98- 06, Center for Applied Coastal Research, University of Delaware.
  13. Lynett, P. and Liu, P.L.-F. (2004a) A two-layer approach to water wave modeling. Royal Society of London A, 460, pp. 2637-2669. https://doi.org/10.1098/rspa.2004.1305
  14. Lynett, P. and Liu, P.L.-F. (2004b) Linear analysis of the multilayer model. Coastal Engineering, 51(6), pp. 439-454. https://doi.org/10.1016/j.coastaleng.2004.05.004
  15. Lynett, P. and Liu, P.L.-F. (2008) Modeling Wave Generation, Evolution, and Interaction with Depth-Integrated, Dispersive Wave Equations COULWAVE Code Manual Cornell University Long and Intermediate Wave Modeling Package. user's manual.
  16. MacMahan, J., Thornton, E., Stanton, T., and Reniers, A. (2005). Ripex: observations of a rip current system. Mar. Geol. 218, pp. 113-134. https://doi.org/10.1016/j.margeo.2005.03.019
  17. Shepard, F.P. (1936) Undertow, rip tide or "rip current," Science, 21, pp. 181-182.
  18. Tang, E.S. and Dalrymple, R.A. (1989) Nearshore circulation: rip currents and wave groups. Nearshore sediment transport study, R. J. Seymour, ed., Plenum Press, New York, pp. 205-230.
  19. Thornton, E., MacMahan, J. and Sallenger, A. Jr. (2007). Rip currents, mega-cusps, and eroding dunes. Mar. Geol., 240, pp. 151-67. https://doi.org/10.1016/j.margeo.2007.02.018
  20. Wei, G. and Kirby, J.T. (1995) A time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 120, pp. 251-261.
  21. Wei, G., Kirby, J.T., Grilli, S.T., and Subramanya, R. (1995) A fully nonlinear Boussinesq model for surface waves. Part. 1. Highly nonlinear unsteady waves. J. Fluid Mech., 294, pp. 71-92. https://doi.org/10.1017/S0022112095002813

Cited by

  1. Understanding of Rip Current Generation Mechanism at Haeundae Beach of Korea: Honeycomb Waves vol.72, 2014, https://doi.org/10.2112/SI72-003.1
  2. Study of Rip Current Warning Index Function Varied according to Real-time Observations vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.477
  3. A Rip Current Warning System Based on Real-Time Observations for Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-011.1
  4. Numerical Studies on Rip Current Control Using Scene-friendly Structures at Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-013.1
  5. Study of Rip Current Warning Index Function according to Real-time Observations at Haeundae Beach in 2012 vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1191