• Title/Summary/Keyword: Wave Sub-Breaking

Search Result 18, Processing Time 0.023 seconds

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

Sub- Breaking Analysis of Free Surface Flows by the Numerical Simulation (수치 시뮬레이션을 통한 자유표면 유동의 Sub-Breaking 해석)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.753-757
    • /
    • 2004
  • The free-surface flow is simulated to make clear the viscous interaction of stem waves and the sub-breaking phenomena around a high speed vehicle. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked They are applied to study precisely on the stem flow of S-103 as to which extensive experimental data are available. Computations are extended to the submerged revolutional body. The numerical result shows that the gradient of M/Us is greatly influenced by the submerged depth And the stem wave is influenced by the separation due to the bow wave.

Numerical Study on Sub-Breaking of Free Surface Viscous Flow (자유표면 점성 유동의 준쇄파 수치연구)

  • Kwag, Seung-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.226-231
    • /
    • 2003
  • The viscous interaction of stern wave is studied by simulating the free-surface flows, including sub-breaking phenomena around a high speed catamaran hull advancing on calm water. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked. The numerical appearance of the sub-breaking waves is qualitatively supported by the experimental observation They are also applied to study precisely on the stern flow of S-103 as to which extensive experimental data are available. For the catamaran, computations are carried out for the mono ana twin hulls.

  • PDF

Detection of Sub-Breaking Waves around a Blunt Bow (비대선수 주위의 Sub-Breaking Wave 탐지기법)

  • Myung-Soo Shin;Young-Gill Lee;Eun-Chan Kim;Seung-Il Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.117-124
    • /
    • 1992
  • Waves around a practical hull form and a series 60 model are computed by rectangular variable spacing and staggered flesh systems based on MAC(Marker and Cell) method. As a governing equation, the Euler equation is adopted. The comparison indicates that the computed waves are in good agreement with the measured results and that the MAC method is useful. On the other hand, a critical condition for the appearance of sub-breaking waves derived from the in viscid instability analysis is applied to the calculated flow field around a blunt bow. It is confirmed that the derived condition detects well the appearance of sub-breaking waves.

  • PDF

Ocean Engineering Basic Test for 5MW Offshore Wind Turbine Sub-structure Jack-up Platform (5MW급 해상풍력 Sub-structure Jack-up Platform 수조모형시험)

  • Jeon, Jung-Do;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • The safety and stability of 5MW class offshore wind turbine Jack-up platform was investigated through ocean basin experiment. For simulating the environmental condition of yellow sea in the South Korea, diverse waves, winds and currents were performed based on Froude's number. Regular wave and irregular wave based on Froude's number were applied to the wind turbine structure. In experiments, the height and period of regular wave type were scaled down as the 1:50 ratio of real wave condition. Irregular wave type was simulated with TMA(Texel Storm, Marsen and Arsloe)spectrum. The vertical reaction force, resonance period and wave pressure applied to multi-supporters of wind offshore structure were measured experimentally. Finally, the results showed that the capsizing situation of the offshore structure was generated by the severe environmental condition.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Computation of Flows Around a High Speed Catamaran

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.465-472
    • /
    • 2001
  • A numerical study is carried out to clarify the characteristics of flow fields and breaking phenomena around a high speed catamaran hull advancing on calm water. Computations are carried out for Froude numbers between 0.2 and 1.0 and for ratios of the distance between hulls to the catamaran length varying between 0.2 and 0.5 for a mathematically defined Wigley hull. A Navier-Stokes solver which includes the nonlinearities of free surface conditions is employed. Computations are performed in a rectangular grid system based on the Marker & Cell method. For validation, present computation results are compared with existing experimental results. As an application, the results of the displacement catamaran are used for the breaking analysis.

  • PDF

Appearing Condition of Breaking Waves at Infant Stage and Numerical Simulation (쇄파의 초기단계 생성조건과 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.873-879
    • /
    • 2009
  • The steady breakers at an infant stage are investigated through the numerical simulation. The appearing condition and characteristics of the sub-breaking waves are reviewed by analysing bow waves. The instability analysis is possibly done through the relationship between the free-surface curvature and circumferential force, which is obtained from the momentum equations. Navier-Stokes equations are solved by a finite difference method where the body-fitted coordinate system, the wall function and the advanced mesh system are invoked. The numerical result shows that the gradient of M/$U_s$ is greatly influenced by the Froude number and the decrease of M/$U_s$ indicates that the flows are unstable. Additionally flows with plunging or spilling are simulated successfully, but the application of breakers to the severely broken wave still remains to be settled in the future.

Numerical Simulation of the Flows and Breaking Phenomena for the Design for High Speed Vessels (고속선 설계를 위한 유동계산 및 쇄파현상)

  • 박명규;곽승현
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.3
    • /
    • pp.85-92
    • /
    • 1993
  • In connection to the design of high speed vessels, the numerical simulation is carried out to make clear the property of flows and breaking phenomena around the catamaran. It is because the bradking phenome-non is closely related to the free-surface turbulent flow. The free-surface wave and transverse velocity vectors are calculated around the twin and demi hull of the catamaran. Computed results are applied to detect the appearance of sub-breaking waves around the hull. The critical condition for their appearance is studied at two Froude numbers of 0.45 and 0.95. The nu-merical analysis shows that the breaking is more serious near the twin hull rather the demi hull. To simu-late the flows, the Navier-Stokes solver is invoked with a free-surface. The computation is made only in half a domain because it is symmetric in the shape.

  • PDF

The Change of Beach Processes at the Coastal Zone with the Impact of Tide (조석(潮汐)의 영향(影響)이 있는 연안(沿岸)해역(海域)에서의 해안과정(海岸過程)의 변화(變化))

  • Kim, Sang-Ho;Lee, Joong-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.257-262
    • /
    • 2002
  • Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered from accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the case of a narrow tidal range at Nakdong river's estuary area to understand the effect of water level variation on the littoral drift. Simulations are conducted in terms of incident wave direction and tidal level. Characteristics of wave transformation, nearshore current, sediment transport, and bottom change are shown and analyzed. We found from the simulation that the tidal level impact to the sediment transport is very important and we should apply the numerical model with different water level to analyze sediment transport mechanism correctly. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF