• Title/Summary/Keyword: Wave Setup

Search Result 98, Processing Time 0.022 seconds

Optimal Design of Batch-Storage Network (회분식 공정-저장조 그물망 구조의 최적설계)

  • 이경범;이의수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.802-810
    • /
    • 1998
  • The purpose of this study is to find the analytic solution of determining the optimal capacity of processes and storages to meet the product demand. Recent trend to reduce product delivery time and to provide high quality product to customer requires the increasing capacity of storage facilities. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision making about the capacity of processes and storages is important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ(Economic Order Quantity) model, trimmed with practical experience but the unrealistic assumption of EOQ model is not suitable for the chemical plant design with highly interlinked processes and storages. This study, a first systematic attempt for this subject, clearly overcomes the limitation of classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked processes and storages. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied. The objective function of optimization is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provide a set of simple analytic solution in spite of realistic description of material flow between process and storage. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design confronting diverse economic situation.

  • PDF

Optimal Designofa Process-Inventory Network Under Infrequent Shutdowns (간헐적인 운전시간 손실하에 공정-저장조 망구조의 최적설계)

  • Yi, Gyeongbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.563-568
    • /
    • 2013
  • The purpose of this study is to find the analytic solution for determining the optimal capacity (lot-size) of a batch-storage network to meet the finished product demand under infrequent shutdowns. Batch processes are bound to experience random but infrequent operating time losses. Two common remedies for these failures are duplicating another process or increasing the process and storage capacity, both of which are very costly in modern manufacturing systems. An optimization model minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units is pursued with the framework of a batch-storage network of which flows are susceptible to infrequent shutdowns. The superstructure of the plant consists of a network of serially and/or parallel interlinked batch processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors.A novel production and inventory analysis method, the PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model stems from the fact it provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance a proper and quick investment decision at the early plant design stagewhen confronted with diverse economic situations.

Investigation of Generative Contactile Force of Frog Muscle under Electrical Stimulation

  • Park, Suk-Ho;Jee, Chang-Yeol;Kwon, Ji-Woon;Park, Sung-Jin;Kim, Byung-Kyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1914-1919
    • /
    • 2006
  • Recently, the microrobots powered by biological muscle actuators were proposed. Among the biological muscle actuators, frog muscle is well known as a good muscle actuator and has a large displacement, actuation forces and piezoelectric properties. Therefore, for the application of the biomimetic microrobot, this paper reports the electromechanical properties of frog muscle. First of all, the experimental setup has been established for measuring generative force of the frog muscle. Through the various electrical stimulating inputs to the frog muscle, we measured the contractile force of the frog muscle. From the measuring results, we found that the actuating contractile force responses of the frog muscle are determined by the amplitude, frequency, duty ratio, and wave form of the stimulation signal. This study will be beneficial for the development of the microrobot actuated by frog muscle.

Development of High-Sensitivity Cantilever-Detected ESR Measurement Using a Fiber-Optic Interferometer

  • Tokuda, Yuki;Tsubokura, Daichi;Ohmichi, Eiji;Ohta, Hitoshi
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.173-177
    • /
    • 2013
  • Cantilever-detected high-frequency electron spin resonance (ESR) is a powerful method of sub-terahertz and terahertz ESR spectroscopy for a tiny magnetic sample at low temperature. In this technique, a small magnetization change associated with ESR transition is detected as deflection of a sample-mounted cantilever. So far, we have succeeded in ESR detection at 370 GHz using a commercial piezoresistive microcantilever. The spin sensitivity was estimated to ${\sim}10^{12}$ spins/gauss. In order to further increase the sensitivity, we adopt a fiber-optic-based detection system using a Fabry-Perot interferometer in place of piezoresistive system. Fabry-Perot cavity is formed between an optical-fiber end and microcantilever surface, and a change in the interference signal, corresponding to the cantilever deflection, is sensitively detected. This system is suitable for low-temperature and high-magnetic-field experiments because of its compact setup and less heat dissipation. In this study, performance of Fabry-Perot interferometer is evaluated, and its application to cantilever-detected ESR measurement is described.

Simulation Application for Functional Electrical Stimulator (기능적 전기 자극 시뮬레이션 응용프로그램)

  • Jeon, Hyo Chan
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2016
  • In this study, the application was developed for the simulation of functional electrical stimulation. It functions to calculate the electrical energy which is transmitted to the patient, to visualize the electrical stimulation waveform, Therapy, Burst and Pulse section as setup of time period requested. The application was verified by comparing the oscilloscope and the graph of the application. XML schema was developed to utilize the contents of simulation which consist of the standard codes that are identified by OID. Using the application, medical experts will be able to research and share the contents of simulation.

Finite Element Analysis for Dielectric Liquid Discharge under Lightning Impulse Considering Two-Phase Flow (절연유체 내 2상유동을 고려한 뇌임펄스 응답 유한요소해석)

  • Lee, Ho-Young;Lee, Jong-Chul;Chang, Yong-Moo;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2097-2102
    • /
    • 2011
  • Discharge analysis technique for dielectric liquid was presented by using the Finite Element Analysis (FEA) under a lightning impulse incorporating two-phase flow phenomena which described gas and liquid phases in discharge space. Until now, the response of step voltage has been extensively explored, but that of lightning impulse voltage was rarely viewed in the literature. We, therefore, developed an analyzing technique for dielectric liquid in a tip-sphere electrode stressed by a high electric field. To capture the bubble phase, the Heaviside function was introduced mathematically and the material functions for the ionization, dissociation, recombination, and attachment were defined in liquid and bubble, respectively. By using this numerical setup, the molecular dissociation and ionization mechanisms were tested under low and high electric fields resulted from the lightning impulse voltage of 1.2/50 ${\mu}s$. To verify our numerical results, the velocity of electric field wave was measured and compared to the previous experimental results which can be viewed in many papers. Those results had good agreement with each other.

A Study on Transmitter and Receiver Design of Proximity Magnetic Sensor for Enhancement of Target Detection Range (표적 탐지거리 향상을 위한 근접자기센서 송수신기 설계에 관한 연구)

  • Ju, Hye-Sun;Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1151-1158
    • /
    • 2011
  • Proximity magnetic sensor is able to detect the object target accurately in close range and it has been widely used in the underwater guided weapon system because there is no countermeasures from the target. In order to increase the damage of target by shock wave due to explosion of the underwater guided weapon system, the maximum detection range of the proximity magnetic sensor needs to be increased. In this paper, we describe the techniques of the optimum transmitting and receiving coils design using the Finite Element Method for the output power enhancement of the transmitter and the sensitivity improvement of the receiver. Finally, the proposed design techniques of the transmitter and the receiver were verified using a experimental setup and a prototype.

A Study on sine-wave Input Current Correction of Single-Phase Buck Rectifier (단상 강압형 정류기의 정현파 입력전류 개선에 관한 연구)

  • Jung, S.H.;Lee, H.W.;Suh, K.Y.;Kwon, S.K.;Kim, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.180-182
    • /
    • 2001
  • Input Current Correction of Single-Phase Buck Rectifier is studied in the paper. To sinusoidal waveform the input current with a near-unity power factor over a wide variety of operating conditions, the output capacitor is operated with voltage reversibility for the supply by arranging the auxiliary diode and power switching device. Then the output voltage is superposed on the input voltage during on time duration of power switching devices in order to minimize the input current distortion caused by the small input voltage when changing the polarity. The tested setup, using two insulated-gate bipolar transistors(IGBT) and a microcomputer, is implemented and IGBT are switched with 20[kHz], which is out of the audible band. Moreover, a rigorous state-space analysis is introduced to predict the operation of the rectifier. The simulated results confirm that the input current can be sinusoidal waveform with a near-unity power factor and a satisfactory output voltage regulation can be achieved.

  • PDF

Fast-Converging Algorithm for Wavefront Reconstruction based on a Sequence of Diffracted Intensity Images

  • Chen, Ni;Yeom, Jiwoon;Hong, Keehoon;Li, Gang;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • A major advantage of wavefront reconstruction based on a series of diffracted intensity images using only single-beam illumination is the simplicity of setup. Here we propose a fast-converging algorithm for wavefront calculation using single-beam illumination. The captured intensity images are resampled to a series of intensity images, ranging from highest to lowest resampling; each resampled image has half the number of pixels as the previous one. Phase calculation at a lower resolution is used as the initial solution phase at a higher resolution. This corresponds to separately calculating the phase for the lower- and higher-frequency components. Iterations on the low-frequency components do not need to be performed on the higher-frequency components, thus making the convergence of the phase retrieval faster than with the conventional method. The principle is verified by both simulation and optical experiments.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.