• Title/Summary/Keyword: Wave Setup

Search Result 98, Processing Time 0.029 seconds

3-Dimensional Imaging of Shear Wave Velocity in the Soil Site using HWAW Method (HWAW방법을 이용한 지반의 전단파 속도 3-D 영상화)

  • Park, Hyung-Choon;Hwang, Hea-Jin;Cho, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.176-181
    • /
    • 2010
  • The evaluation of shear modulus (or shear wave velocity) profile of the site is very important in various fields of geotechnical engineering. In the field, there exist spatial variations of shear modulus that case uncertainty in the geotechnical analysis or design. So it is necessary to evaluate the spatial variation of shear wave velocities of the soil site. In this study, the HWAW method is applied to the determination of a 3-D Vs map of soil site. The HWAW method, which is based on harmonic wavelet transforms, has been developed to determine phase and group velocities of waves. The HWAW method uses only the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity in order to minimize the effect of the noise. The field testing of this method is relatively simple and fast because only one experimental setup, which consists of one pair of receivers on the surface, is needed using a short receiver spacing setup (1~3m). These characteristics make it possible to determine detailed local Vs profile in the site with lateral Vs variation and to evaluate 3-D Vs map by performing a series of tests on the grid. To estimate the applicability of the proposed method, field tests were performed. Through field applications validity and applicability of the proposed method were verified.

  • PDF

Nonlinear Wave Transformation and Dynamic Behaviors of Semi-Submerged Air-Chamber Floating Breakwater (반잠수압기형부방파제의 비선형파랑변형 및 동적거동에 관한 연구)

  • Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • Generally, it is pointed out that a nonlinear analysis is needed to estimate accurately the water surface fluctuation and dynamic responses of a floating structure in case of large wave reflection. In this study, a frequency-domain method is applied and newly developed to analyze the nonlinear characteristics of the air-chamber floating breakwater. The air-chamber floating breakwater in this study can control well the wave transformation, motions of the structure and its natural frequency by adjusting the air depth in the chamber. Experiments are carried out to verify the numerical results. It is appeared that the mean water level is setup in the anti-node and setdown in the node, while the nonlinearity in wave profile is larger in the node than in the anti-node. Because of vertical mooring system, the sway, especially the time-independent nonlinear component, plays predominant role in the motion. On the other hand, the time-dependent component, as well as the time-independent one to the tensile force of mooring line contributes greatly, and the time averaged value presents tensional force oriented to the onshore side due drift force.

  • PDF

Optimal design of parallel noncontinuous units with feedstock/product storages (원료및 제품저장조를 포함하는 병렬 비연속 공정의 최적설계)

  • Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.532-541
    • /
    • 1997
  • This article derives an analytic solution to determine the optimal size of multiple noncontinuous process and storage units. The total cost to be minimized consists of the setup cost of noncontinuous processing units and the inventory holding cost of feedstock/product storages. A novel approach, which is called PSW(Periodic Square Wave) model, is applied to represent the material flow among non-continuous units and storages. PSW model presumes that the material flow between unit and storage is periodic square wave shaped. The resulting optimal unit size has similar characteristics with the classical economic lot sizing model such as EOQ(Economic Order Quantity) or EPQ(Economic Production Quantity) model in a sense that the unit size is determined as the balance between setup and inventory holding cost. However, the influence of inventory holding cost of PSW model is different from that of EOQ/EPQ model. EOQ/EPQ model includes only the product inventory holding cost but PSW model includes all inventory holding costs around the non-continuous unit with proportional contribution. PSW model is suitable for analyzing interlinked process-storage system. The optimal lot size of PSW model is smaller than that of EOQ/EPQ model. This is quitea remarkable result considering that the EOQ/EPQ model has been is widely used since last half century.

  • PDF

Long Range Ultrasonic Guided Wave Techniques for Inspection of Pipes (유도초음파를 이용한 장거리 배관 탐상기법)

  • Park, Ik-Keun;Kim, Yong-Kwon;Kim, Hyun-Mook;Song, Won-Joon;Cho, Yong-Sang;Ahn, Yeon-Shik
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.43-48
    • /
    • 2005
  • Conventional non-destructive techniques for inspection of the weld in pipelines require significant test time and high cost. Ultrasonic guided waves have been widely studied and successfully applied to various non-destructive tests with advantage of the long-range inspection. In this paper, a study on the application of ultrasonic guided waves to the long-range inspection of the pipeline is presented using a long-range guided wave inspection system, Wavemaker SE16, GUL. The characteristics and setup of the long-range guided wave inspection system and experimental results in pipes of with various diameter are introduced. The experimental results in mock-up pipes with cluster type detects show that the minimum detectable wall thickness reduction with this guided wave system is $2\~3\%$ in the pipe cross section area. And the wall thickness reduction of $5\%$ in cross section area can be detected when actual detection level is used. Therefore, the applicability of the guided wave systeme to long-range inspection of wall thickness reduction in pipes is verified.

Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements

  • Willberg, Christian
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.37-60
    • /
    • 2016
  • In this paper an electromechanically coupled isogeometric finite element is utilized to analyse Lamb wave excitation with piezoceramic actuators. An effective actuator design reduces the energy needed for Lamb wave excitation, which is beneficial if a structural health monitoring system should be applied for a structure. For a better understanding of the actuator behavior the piezoeceramics are studied both free and bonded at a structure. The numerical part of the analysis is performed utilizing isogeometric finite elements. To obtain the optimal performance for the numerical analysis the effect of k-refinement of the isogeometric element with respect to the convergence is studied and discussed. The optimal numerical setup with the best convergence rate is proposed and is validated with free piezoeceramic actuators. The validated model is then utilized to study the impact of actuator shape and adhesive bondline effect to the wave amplitude. The study shows that simplified analytical equations do not predict the optimal excitation frequencies for all piezoceramic designs accurately.

Structural damping of composite materials using combined FE and lamb wave method

  • Ben, B.S.;Ben, B.A.;Kweon, S.H.;Yang, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1047-1065
    • /
    • 2014
  • The article presents the methodology for finding material damping capacity at higher frequency and at relatively lower amplitudes. The Lamb wave dispersion theory and loss less finite element model is used to find the damping capacity of composite materials. The research has been focused on high frequency applications materials. The method was implemented on carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) plates. The Lamb waves were generated using ultrasonic pulse generator setup. The hybrid method has been explored in this article and the results have been compared with bandwidth methods available in the literature.

Measurement of Viscoelastic Properties of Damping Materials using Beam Transfer Function Method (보 전달함수법을 이용한 제진재의 점탄성 특성 측정)

  • Kim, Seung-Joon;Lee, Je-Pil;Park, Jun-Hong;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.286-289
    • /
    • 2008
  • Damping materials are widely used to reduce vibration or noise generation of structures. To understand their damping capability and for use in numerical simulations, their viscoelastic properties should be measured in the frequency range of interest. In this study, experimental setup is proposed to measure materials properties of very compliant polymer materials. The polymer materials used in this study are difficult to form into rod shapes, and typical resonance methods are not applicable. In the proposed measurement setup, the damping materials were modeled as a simple viscoelastic support at one end of the beam. Their properties were measured through analysis of their effects on the wave propagation characteristics of the beam structure.

  • PDF

A Study on Application of HWAW Method to the Non-horizontally Layered Soil Structure (HWAW 기법의 비수평 출상구조지반 적용에 대한 고찰)

  • Bang, Eun-Seok;Park, Heon-Joon;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.5-17
    • /
    • 2009
  • In HWAW method, experimental dispersion curve is obtained through time-frequency analysis, and inversion procedure is based on the forward modeling which considers full wavefield. Therefore, it enables us to use relatively short testing setup and has advantage for two dimensional subsurface imaging compared with another surface wave methods. Numerical study was performed to verify that the HWAW method can be applied to non-horizontally layerd soil structure. The experimental dispersion curves obtained from HWAW method agreed with the theoretical dispersion curves based on full wavefield. Experimental dispersion curves are mainly more affected by the region between two receivers than by the region from source to the first receiver. Fluctuation phenomena of dispersion curve can be reduced by adequate receiver spacing setup. From numerical study, it was thought that reliable Vs distribution map can be constructed by HWAW method and finally subsurface imaging was tried in the real field.

이상파랑하에서의 해빈변화특성 해석

  • Kim, Hui-Jae;An, Hyo-Jae;Kim, Gang-Min;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.241-243
    • /
    • 2014
  • Recently, as the coastal erosion impacts greats to both social and economical aspects, each local government is trying to setup its countermeasures. However, it is necessary to survey the change of sediment movement characteristics and investigate the continuous environment change by long-term monitoring after building prevention constructions. In this study, predictions on wave deformation and sediment movement deduced through the numerical modeling are made, based on the ordinary and extraordinary wave through seasonal superiority wave direction, height, period and long-term wave characteristics on the eroded beach of central West sea.

  • PDF

Fizeau interferometry using angled end-face optical fiber source (경사 단면 광섬유 광원을 이용한 피조 간섭계)

  • 김학용;김병창;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.334-338
    • /
    • 2001
  • A Fizeau interferometer without beam splitter was constructed. Single-mode optical fiber was used as a spherical wave source and the face of fiber end was polished and coated to be a reflecting surface. The reflecting surface was angled so that interference fringe could be detected by CCD camera. Beam splitter in front of a spherical wave source could distort the wave front and that was one of the component error sources. With the proposed configuration there was no need to place beam splitter in the system. Improvement of phase measuring accuracy was evaluated quantitatively by comparing the result of this setup with that of a conventional Fizeau interferometer. Wave front of the angled end-face optical fiber source was also measured to verify its sphericity by PS/PDI (Phase Shifting/Point Diffraction Interferometer). The principle of this technique was presented and the experimental results and its applications were discussed. ussed.

  • PDF