• Title/Summary/Keyword: Wave Energy Generation System

Search Result 114, Processing Time 0.03 seconds

Performance of integrated vertical raft-type WEC and floating breakwater

  • Tay, Zhi Yung;Lee, Luke
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-61
    • /
    • 2022
  • Renewable energy such as wave energy has gained popularity as a means of reducing greenhouse gases. However, the high cost and lack of available sea space in some countries have hindered the deployment of wave energy converters (WEC) as alternative means of sustainable energy production. By combining WECs with infrastructures such as floating breakwaters or piers, the idea of electricity generated from WECs will be more appealing. This paper considers the integration of vertical raft-type WEC (commonly known as the vertical flap WEC) with floating breakwater as means to generate electricity and attenuate wave force in the tropical sea. An array of 25 WECs attached to a floating breakwater is considered where their performance and effect on the wave climate are presented. The effects of varying dimensions of the WEC and mooring system of the floating breakwater have on the energy generation are investigated. The integrated WECs and floating breakwater is subjected to both the regular and irregular waves in the tropical sea to assess the performance of the system. The result shows that the integrated vertical flap-floating breakwater system can generate a substantial amount of wave energy and at the same time attenuate the wave force effectively for the tropical sea when optimal dimensions of the WECs are used.

A Study on the ESS Integration Plan with Inner PCS of Wave-Offshore Hybrid Generation System for Maximizing Power Profile Stability (복합발전의 공급전력 안정성 극대화를 위한 파력발전 PCS의 BESS 연동방안 연구)

  • Jung, Seungmin;Kim, Hyun-Wook;Yoo, Yeuntae;Jang, Gilsoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.82-91
    • /
    • 2014
  • The combined generator system by integrating several renewable energy sources can share the electrical infrastructure and therefore have the advantage of constructing not only the transmission system but also the power conversion system. Among the various combined renewable system, the wind power and wave power has a high possibility of future growth due to the economic feasibility in offshore environment. This kind of large-scale combined systems might be follow the determination by the transmission system operator's directions and control the output profile by focusing at PCC. However, both renewable energies are depend on the unpredictable environmental variation; it is needed to do the compensation devices. In this paper, the ESS compensation plan is proposed to do output determination of the combined generator system by paying attention to active power of utility grid with the analysis of the controllable elements of the wind and wave power generator. The improvement of the new application technique of the combined system is confirmed through using the PSCAD/EMTDC. The entire simulation process was designed by adopting the active power control according to the reference signal of TSO.

Discussion on Optimal Shape for Wave Power Converter Using Oscillating Water Column (진동수주형 파력발전구조물의 최적형상에 대한 검토)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Baek, Dong-Jin;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.345-357
    • /
    • 2011
  • Recently, as part of diversifying energy sources and earth environmental issues, technology development of new renewable energy using wave energy is actively promoted and commercialized around Europe and Japan etc. In particular, OWC(Oscillating Water Column) wave power generation system using air flow induced by vertical movement of the water surface by waves in an air-chamber within caisson is known as the most efficient wave energy absorption device and therefore, is one of the wave power generation apparatus the closest to commercialization. This study examines air flow velocity, which operates turbine(Wells turbine) directly in oscillating water column type wave power generation structure from two-and three-dimensional numerical experiments and discusses optimal shape of oscillating water column type wave power generation structure by estimating the maximum flow rate of air according to change in shape. The three-dimensional numerical wave flume was applied in interpretation for this study which is the model for the immiscible two-phase flow based on the Navier-Stokes Equation. From this, it turned out that size of optimal shape appears differently according to the incident wave period and air flow is maximized at the period where minimum reflection ratio occurs.

The Output Power Control in the Sea-Wave Input Generation System by the Secondary Excited System (이차여자시스템에 의한 파력발전시스템의 출력제어)

  • 김문환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1013-1018
    • /
    • 2003
  • This paper deals with the secondary excited induction generator applied to random energy input generation system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled inverter connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this paper, the input torque simulator, which generate the statistically varied wave power input torque in the laboratory to drive the secondary excited induction generator, are constructed. The experimental and numerical results show the advantage of secondary excited induction generator system for the random input wave generation system.

The Wave Power Generator on Small Ship for Charging Engine Start-Up Battery (엔진 시동용 소형선 탑재형 파력 발전 시스템)

  • Kisoo, Ryu;Sungjin, Kang;Byeongseok, Yu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • Efforts to reduce carbon dioxide(CO2) emissions are being carried out due to climate environmental problems. Eco-friendly ships are also being developed, and various energy saving measures have been developed and applied. In ships, researches have been conducted in various fields such as electric propulsion system and energy saving devices. In addition, the development of ships using various renewable energy, such as kite using wind power and wind power generation, has been carried out. This paper proposes a plan to use renewable energy for ships by applying wave generators to small ships. In 2016, 130 small domestic ships drifted by sea due to discharge of starting storage batteries, and discharge cases accounted for the largest portion of the causes of domestic ship accidents. This is due to the excessive use of storage batteries for starting the main engine by departing in a weak storage battery state for small ships. Accordingly, two type wave power generators - opened flow wave power generator and enclosed vibrator type wave power generator - are developed for charging a starting storage battery when the ships are stationary at sea or port. Opened flow wave power generator utilizes the flow of fluid in the ship by using wave induced ship motion. Enclosed vibrator type wave power generator utilizes the pendulum kinetic energy located in a ship due to wave induced ship motion.

Control of 30kW Grid-Connected PCS for Wave Power Generation (파력발전용 30kW 계통연계형 PCS 제어)

  • Kim, Wan-Seok;Kim, Jae-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.470-475
    • /
    • 2019
  • This paper deals with a 30kW grid-connected PCS (Power Conversion System) for an Oscillating Water Column (OWC) wave-power generation system. Wave power generation in marine energy is suitable for Korea with the characteristics of a peninsula with three sides facing the sea. In the case of coastal disasters, wave generators can act as a breakwater to reduce damage, and can be integrated with other marine power generation systems to increase efficiency. Wave power generation systems are classified into various types, such as oscillating bodies, OWC, and overtopping according to the operation principle, and they can also be classified into two types according to the installation method: a fixed structure and floating structure. This paper proposes a 30kW grid-connected PCS topology and model for OWC wave power generation that is structurally stable with a turbine and generator that are relatively easy to maintain, and then provide a control method required for grid connection, including DC link voltage control. Simulation verification was performed to verify the proposed PCS.

Anti-Fouling System for Oscillating Water Column in Buoy (진동 수주형 브이의 Anti Fouling system)

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.441-445
    • /
    • 2010
  • The ouput power of wave energy system in buoy is determined according to the inner diameter of oscillating water column and flow resistance. The increase of adhered shellfish inside the water column leads to decrease the inner diameter of wave energy converter. Influx loss of seawater reduces the efficiency of output power in the wave generation system. In this paper, the test result of AFS characteristic is described for preventing the deposition with shellfish and etc. The current of anode is controlled by buck converter, and the control algorithm developed for AFS in buoy. The experimental results is shown excellent preventing capapbility of AFS in buoy.

A Study on Equivalent Design Wave Approach for a Wave-Offshore Wind Hybrid Power Generation System (부유식 파력-해상풍력 복합 발전시스템의 등가설계파 기법 적용에 관한 연구)

  • Sohn, Jung Min;Shin, Seung Ho;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • Floating offshore structures should be designed by considering the most extreme environmental loadings which may be encountered in their design life. The most severe loading on a wave-offshore wind hybrid power generation system is wave loads. The principal parameters of wave loads are wave length, wave height and wave direction. The wave loads have different effects on the structural behavior characteristic depending on the combination of wave parameters. Therefore, the process of investigation for critical loads based on the individual wave loading parameter is need. Namely, the equivalent design wave should be derived by finding the wave condition which generates the maximum stress in entire wave conditions. Through a series of analysis, an equivalent regular wave height can be obtained which generates the same amount of the hydrodynamic loads as calculated in the response analysis. The aim of this study is the determination of equivalent design wave regarding to characteristic global hydrodynamic responses for wave-offshore wind hybrid power generation system. It will be utilized in the global structural response analysis subjected to selected design waves and this study also includes an application of global structural analysis.

Interaction Analysis on Deployment of Multiple Wave Energy Converters in a Floating Hybrid Power Generation Platform (부유식 복합발전 플랫폼내의 다수 파력발전기 배치를 위한 상호작용 해석)

  • Lee, Hyebin;Cho, Il Hyoung;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.185-193
    • /
    • 2016
  • In this study, the present deployment of the multiple wave energy converters (WECs) in a floating wind-wave hybrid power generation platform was estimated considering the interaction effect among WEC buoys. The interaction processes of multiple buoys were very complex, since scattered and radiated waves from each buoy affected the others in the array. The interaction analysis of the diffraction and radiation problem by the array of WECs was applied by matched eigenfunction expansion method (MEEM). The analytical solutions were compared with the results of numerical calculation based on WAMIT. The overall performance of 24 WECs installed in the hybrid power generation platform was evaluated by the q-factor representing the interaction effect among buoys.

Study on the Buoy and Vibration System in Broadband Ocean Wave Power Generator (광대역 파력발전기의 진동시스템과 부양 체에 대한 연구)

  • Lee, Hong-Chan;Yea, Kyung-Soo;Hwang, Sung-Il;Han, Ki-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.780-787
    • /
    • 2012
  • In general, the ocean wave vibration power generator consists of buoy, vibration system and linear generation system. It maximized energy efficiency by using resonance phenomenon that turned to the natural frequency of vibration system and frequency of ocean wave energy. But it is difficult to obtain efficiently energy from ocean wave because the frequency of ocean wave changes from moment to moment. In this paper, we study the buoy and vibration system of ocean wave power generator to solve these problem. Firstly, we designed the buoy that gives rise to resonance between ocean wave and buoy. Secondly, we designed vibration system that is occurred to resonance between buoy and vibration system. And then the relative velocity between the buoy and magnetic of ocean wave vibration generator increases and the relative displacement between buoy and ocean wave decreases at the same time. As a result, the method which is proposed in this paper has merits not only securing its stability from harsh ocean wave environment but also obtaining more kinetic energy from ever-changing ocean wave.