• Title/Summary/Keyword: Watershed runoff process

Search Result 111, Processing Time 0.03 seconds

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (I) - Theory - (다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(I) - 이론 -)

  • Kim, Keuk-Soo;Han, Kun-Yeun;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.247-257
    • /
    • 2009
  • In this study, a distributed rainfall-runoff model is developed using a multi-directional flow allocation algorithm and the real-time runoff updating algorithm. The developed model consists of relatively simple governing equations of hydrologic processes in order to apply developed algorithms and to enhance the efficiency of computational time which is drawback of distributed model application. The variability of topographic characteristics and flow direction according to various spatial resolution were analyzed using DEM(Digital Elevation Model) data. As a preliminary process using fine resolution DEM data, a multi-directional flow allocation algorithm was developed to maintain detail flow information in distributed rainfall-runoff simulation which has strong advantage in computation efficiency and accuracy. Also, a real-time updating algorithm was developed to update current watershed condition. The developed model is able to hold the information of actual behavior of runoff process in low resolution simulation. Therefore it is expected the improvement of forecasting accuracy and computational efficiency.

Evaluation of Runoff and Sediment Yield Reduction with Diversion Ditch and Vegetated Swale Using WEPP Model (WEPP 모형을 이용한 우회수로 및 식생수로의 유출 및 토사유출 저감 평가)

  • Choi, Jae-Wan;Shin, Dong-Seok;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.863-873
    • /
    • 2011
  • It has been known that soil erosion caused by water has been a serious problem worldwide. Thus various modeling techniques for conservationists, farmers, and other land users have been developed and utilized to estimate effects of numerous site-specific Best Management Practices on soil erosion reduction. The physical process-based WEPP model would provide both temporal and spatial estimates of soil loss within small watersheds and for hillslope profiles within small watersheds. Thus, the WEPP watershed version was applied to study watershed, located at Jawoon-ri, Gangwon to simulate diversion ditch and vegetated swale with detailed input data set. The sediment yield and runoff reduction rates reduced by 5.8% and 29.6% with diversion ditch and 9.8% and 14.5% with vegetated swale. With vegetated diversion ditch, runoff and sediment yield could be reduced by 11.8% and 40.4%, respectively. Based on the results obtained in this study, the WEPP model would be an useful tool to measure runoff and sediment yield reduction and establish site-specific sediment reduction best management plan.

Determination of Effective Rainfall by US SCS Method and Regression Analysis (SCS방법 및 회귀분석에 의한 유출 강우량 결정)

  • 선우중호;윤용남
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.101-111
    • /
    • 1977
  • The analysis performed here is aimed to increase the familiarity of hydrologic process especially for the small basins which are densely gaged. Kyung An and Mu Shim river basins are selected as a represectative basin according to the criteria which UNESCO has establisheed back in 1964 and being operated under the auspice of Ministry of Construction. The data exerted from these basins is utilized for the determination of the characteristics of precipitation and runoff phenomena for the small basin, which is considerred as a typical Korean samll watershed. The methodology developed by Soil Conservation Service, USA for determination of runoff value from precipitation is applied to find the suitability of the method to Korean River Basin. The soil cover complex number or runoff curve number was determined by considering the type of soil, soil cover, land use and other factor such as antecent moisture content. The averag values of CN for Kyung An and Mushim river basins were found to be 63.9 and 63.1 under AMC II, however, the values obtained from soil cover complex was less than those from total precipitation and effective precicpitation by 10-30%. It may be worth to note that an attention has to be paid in the application of SCS method lo Korean river basin by adjusting 10-30% increase to the value obtained from soil cover complex. Finally, the design flood hydrograph was consturcted by employing unit hydrograph technique to the dimensionless mass curve. Also a stepwise multiple regression was performed to find the relationship between runoff and API, evapotranspiration rate, 5 days antecedent precipitation and daily temperature.

  • PDF

Impact of Climate Change on Runoff Analysis in the Geum River Basin (금강 유역에서의 기후변화에 대한 유출 영향 분석)

  • Ahn, Jung-Min;Jung, Kang-Young;Kim, Gyeonghoon;Kwon, Heongak;Yang, Duk-Seok;Shin, Dongseok
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.549-561
    • /
    • 2017
  • Recently IPCC (International Panel on Climate Change, 2007) pointed out that global warming is a certain ongoing process on the earth, due to which water resources management is becoming one of the most difficult tasks with the frequent occurrences of extreme floods and droughts. In this study we made runoff predictions for several control points in the Geum River by using the watershed runoff model, SSARR (Streamflow Synthesis and Reservoir Regulation Model), with daily RCP 4.5 and RCP 8.5 scenarios for 100 year from 1st Jan 2006 to 31st Dec 2100 at the resolution of 1 km given by Climate Change Information Center. As a result of, the Geum River Basin is predicted to be a constant flow increases, and it showed a variation in the water circulation system. Thus, it was found that the different seasonality occurred.

Watershed Scale Management Techniques of the Pollutants from Small Scale Livestock Ranches - Buffer Zone Selection for Natural Purification - (농촌 소유역 축산폐수의 유역관리기법 개발 - 자연정화처리를 위한 완충대 적지분석 -)

  • Kim, Seong-Joon;Lee, Nam-Ho;Yoon, Kwang-Sik;Hong, Seong-Gu;Lee, Yun-Ah
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.43-49
    • /
    • 2000
  • Buffer zone selection technique for natural purification of livestock wastewater within a small agricultural watershed was developed using Geographic Information Systems. The technique was applied to $4.12\;km^2$ watershed located in Gosan-myun, Ansung-gun which have 20 livestock farmhouses. As a necessary data for selecting process, feedlot site map, digital Elevation Model (DEM), stream network, soil and land use map were prepared. By using these data, wastewater moving-path tracing program from each feedlot to the stream was developed to get the basic topographic factors; average slope through the paths, distance to the nearest stream and watershed outlet. To identify the vulnerable feedlots for storm event, the grid-based storm runoff model (Kim, 1998; Kim et al., 1998) was adopted. The result helps to narrow down the suitable area of buffer zone, and finally by using subjective but persuasive conditions related to elevation, slope and land use, the suitable buffer zones were selected.

  • PDF

Searching the Natural Tracers for Separation of Runoff Components in a Small Forested Catchment (산림소유역에서 주요 유출성분 분석을 위한 천연추적자의 탐색)

  • Yoo, Jaeyun;Kim, Kyongha;Jun, Jaehong;Choi, Hyungtae;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.4
    • /
    • pp.52-59
    • /
    • 2006
  • This study was conducted to find end-members and tracers which are effective to be applied in the End Member Mixing Analysis (EMMA) model for runoff separation at the Gwangneung coniferous forest catchment (13.6ha), Gyeonggido, Korea. We monitored three successive rainfall events during two weeks from June 26, 2005 to July 10, 2005, and analysed chemical properties of rainfall, throughfall, stemflow, groundwater and soil water considered as main components of storm runoff. The followings are the results of analyses of each component and tracer. Groundwater, soil water and rainfall (or throughfall) were dominant runoff components. Rainfall and groundwater were selected as main components for the two components-one tracer mixing model, and groundwater, soilwater and throughfall were selected as main components for the three components-two tracers mixing model. Tracers were selected from anion ($Cl^-$ and ${SO_4}^{2-}$), cation ($Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$) and Acid Neutralizing Capacity (ANC) in event 1, 2, and 3. $Na^+$, $Ca^{2+}$ and ANC were selected in the two components-one tracer mixing model and ${SO_4}^{2-}-K^+$, ${SO_4}^{2-}-Na^+$, ${SO_4}^{2-}-Ca^{2+}$, ${SO_4}^{2-}$-ANC, and $Ca^{2+}$-ANC were selected in the three components-two tracers mixing model. Selected main runoff components and tracers can provide basic information to determine the contribution rate of each runoff component and identify the runoff process in a forest watershed.

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (II) - Analysis and Application - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (II) - 분석 및 적용 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.53-64
    • /
    • 2012
  • In this study (II), the module developed in the previous study (I) has been tested on application and numerical stability. The runoff module was compared the result of analysis with two different models (FFC2Q and $Vflo^{TM}$) considering characteristic of infiltration. To examine the application and stability of developed module, runoff aspect was simulated under the variety case of rainfall intensity, effective soil depth, elapsed time. The development module was presented typical type of infiltration process looking physically, the different of saturation point on soil type, and characteristic of soil type. Also, the module was reflected in the runoff feature about rainfall intensity and time distribution. Finally, this paper drew a conclusion that result of rainfall-runoff analysis as compared with difference models (FFC2Q and $Vflo^{TM}$) has a high accuracy.

Evaluation of Soil Erosion in Small Mountainous Watersheds Using SWAT Model: A Case Study of the Woldong Catchment, Anseong (SWAT을 이용한 최상류 소유역 토양침식 평가: 안성 월동저수지 유역을 대상으로)

  • Lim, Young Shin;Byun, Jongmin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.13-33
    • /
    • 2021
  • Successful sediment management at the watershed scale requires an understanding of the erosion, transport and sedimentation processes at the specific site scale. However, studies on the sediment runoff characteristics in a small uppermost watershed, which serves as a sediment supply function, are very rare. Therefore, this study attempted to investigate the fluctuations in major sediment supply areas and sediment runoff in the uppermost mountain small watershed, and for this purpose, ArcSWAT (Soil and Water Assessment Tools with GIS interface) was applied to the Woldong reservoir catchment located in Gosam-myeon, Anseong-si, Gyeonggi-do. The model results were manually calibrated using the monitoring data of the Woldong reservoir sedimentation rate from 2005 to 2007. It was estimated that annual average of 34.4 tons/year of sediment was discharged from the Woldong reservoir basin. This estimate almost coincided with the monitoring data of the Woldong reservoir during the low flow period but tended to be somewhat underestimated during the high flow period. Although the SWAT model does not fully reflect the erosion process of gully and in-channel, this underestimation is probably due to the spatial connectivity of sediment transport and the storage and reactivation of the sediment being transported. Most of the forested hillslopes with a well-developed organic horizon were evaluated as having a low risk of erosion, while the places with the highest risk of erosion were predicted to be distributed in the logged area with some weeds or shrubs (classified as pasture) with relatively steeper slopes, and in the bare land. The results of this study are expected to be useful in developing strategies for sediment control and reservoir management.

A Tank Model Shell Program for Simulating Daily Streamflow from Small Watersheds (Tank모형 쉘프로그램을 이용한 중소하천의 일유출량 추정)

  • 박승우
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 1993
  • A menu-driven shell program DSFS (Daily Streamflow Simulation Model), that can process the input data, optimize the parameters, execute the program, and graphically display the results of a modified tank model, was developed and applied to simulating daily streamflow from small watersheds. The model defines daily watershed evapotranspiration losses from potential values multiplied by monthly landuse coefficients and correction factors for soil water storage levels. The parameters were calibrated using observed hydrologic data for fifteen watersheds, and the results were correlated with watershed parameters to define empirical relationships. The proposed model was tested with streamflow data of ungaged conditions, and the simulation results overestimated the annual runoff.

  • PDF