• 제목/요약/키워드: Watershed Scale

검색결과 302건 처리시간 0.031초

최적관리기법 위치분배에 의한 유역단위 하천유량과 회피비용 변화에 관한 연구 (Impact of BMP Allocation on Discharge and Avoided Costs in an Urbanized Watershed)

  • 강상준
    • 환경정책연구
    • /
    • 제9권1호
    • /
    • pp.83-107
    • /
    • 2010
  • 본 연구의 목적은 빗물저류 및 흡수 등 우수관리를 위해 설치하는 최적관리기법(Best Management Practices: BMPs)의 효율적인 위치 및 분배 정도를 유역단위에서 살펴보는 것이다. 이를 위해 여러 개의 지류유역과 본류유역으로 이루어진 하나의 대유역을 구축한 후 Hydrological Simulation Program Fortran(HSPF)을 이용하여 도시유역 내다양한 규모와 위치의 BMPs 시나리오를 제작/모의하였다. 이때 대유역 내 전체 BMPs 면적은 일정하도록 하였으며, 유역하구의 첨두유량과 이와 관련된 회피비용을 효율성의 지표로 활용하였다. 모의 결과 BMPs가 상류지류 유역들에 분산 입지했을 때 가장 높은 효율을 보였으며, 본류유역을 포함하여 소유역 한 곳에 집중되었을 때 가장 낮은 효율을 보였다. 하지만 본 연구는 BMPs의 위치 및 분배 변수를 제외한 BMPs 설계 및 유지관리, 유역 내 다양한 토양특성등의 기타변수가 통제된 가상유역을 대상으로 진행되었다는 한계를 안고 있다. 따라서 본 연구는 유역관리에서 BMPs위치 및 분배가 유역관리에 중요한 정책변수일 수 있다는 가능성을 제시하는 데 그치고 있으며, 이러한 가능성은 향후 국내유역에 대한 실증적 모의연구를 통해 논의될 수 있을 것이다.

  • PDF

황강유역에서의 유역규모를 고려한 HSPF 모형의 적용성 평가 (Application Analysis of HSPF Model Considering Watershed Scale in Hwang River Basin)

  • 최현구;한건연;황보현;조완희
    • 환경영향평가
    • /
    • 제20권4호
    • /
    • pp.509-521
    • /
    • 2011
  • The purpose of this study is to estimate overall reliability and applicability of the watershed modeling for systematic management of point and non-point sources via water quality analysis and prediction of runoff discharge within watershed. Recently, runoff characteristics and pollutant characteristics have been changing in watershed by anomaly climate and urbanization. In this study, the effects of watershed scale were analyzed in runoff and water quality modeling using HSPF. In case of correlation coefficient, its range was from 0.936 to 0.984 in case A(divided - 2 small watersheds). On the other hand, its range was form 0.840 to 0.899 in case B(united - 1 watershed). In case of Nash-Sutcliffe coefficient, its range was from 0.718 to 0.966 in case A. On the other hand, its range was from 0.441 to 0.683 in case B. As a result, it was judged that case A was more accurate than case B. Therefore, runoff and water quality modeling in minimum watershed scale that was provided data for calibration and verification was judged to be favorable in accuracy. If optimal watershed dividing and parameter optimization using PEST in HSPF with more reliable measured data are carried out, more accurate runoff and water quality modeling will be performed.

Optimization of Detention Basin at Watershed Level Scale

  • Ngo, Thi Thuy;Yazdi, Jafar;Kim, Joong Hoon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.218-218
    • /
    • 2015
  • Urbanization and waterworks construction in natural watershed have been causing higher flood risks in lowland areas. Detention basins have become one of the most efficient fundamental instruments for storm water and environmental management at watershed scale. Nowadays, there are many studies coupled numerical methods of flood routing with optimization algorithms to investigate factors that impact on the efficiency of detention basins in flood reduction in a watershed, such as detention basin location, size, and cost and watershed characteristics. Although these couplings have been become more widespread but cumbersome computation and hydraulic data requirement still are their limitations. To tackle the procedure efforts due to numerical integration and data collection, simple approach is proposed to primarily estimate effects of detention basins. The approach basis is the linear system theory applied to the solution of hydrologic flood routing. The paper introduces an analytical method for estimating detention effects deriving by recent studies and innovatively analyses this equation on fractal perspective. Then, an optimization technique is performed by applying harmony search algorithms (HSA) to optimize efficiency of detention basins at watershed scale. The location and size of upstream detention basin are simultaneously obtained. Finally, the proposed methodology, practically applied for a real watershed in Kan river, Iran.

  • PDF

Improved Watershed Image Segmentation Using the Morphological Multi-Scale Gradient

  • Gelegdorj, Jugdergarav;Chu, Hyung-Suk;An, Chong-Koo
    • 융합신호처리학회논문지
    • /
    • 제12권2호
    • /
    • pp.91-95
    • /
    • 2011
  • In this paper, we present an improved multi-scale gradient algorithm. The proposed algorithm works the effectively handling of both step and blurred edges. In the proposed algorithm, the image sharpening operator is sharpening the edges and contours of the objects. This operation gives an opportunity to get noise reduced image and step edged image. After that, multi-scale gradient operator works on noise reduced image in order to get a gradient image. The gradient image is segmented by watershed transform. The approach of region merging is used after watershed transform. The region merging is carried out according to the region area and region homogeneity. The region number of the proposed algorithm is 36% shorter than that of the existing algorithm because the proposed algorithm produces a few irrelevant regions. Moreover, the computational time of the proposed algorithm is relatively fast in comparison with the existing one.

농촌 소유역 수환경 개선을 위한 유역관리 협의체 구성방안 - 함평천 사례를 중심으로 - (Framework of Watershed Management Organization Consortium for Water Environment Improvement of Small Rural Watershed)

  • 이기완;김영주;윤광식
    • 농촌계획
    • /
    • 제11권4호
    • /
    • pp.59-65
    • /
    • 2005
  • Proper management of small rural watershed is important since it does affect water quality improvement of larger scale watershed. Therefore, effective small watershed management guideline including participatory program of local people is required to achieve water environment improvement. Feasibility of water quality goal, short and long-term watershed management plan and funding sources were investigated by field monitoring of Hampyungchun watershed which has characteristics of rural stream, and literature review. The relevant parties and their roles fer watershed management were identified and suggested. A hybrid model, that is mixture of government driven model and NGO model, is recommended for watershed management organization in this study.

유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토 (Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea)

  • 박윤식;류지철;김종건;금동혁;임경재
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Watershed를 이용한 홍채 열공 추출 (Iris Lacuna Extraction using Watershed)

  • 박현선;한일호;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.53-56
    • /
    • 2002
  • In this paper, we propose the method of iris lacuna extraction using watershed transform. Lacuna is salient feature of iris. It has three dimensional structure formed by leak of pigmentation and loss of fiber tissues. Lacuna can be used for iris recognition system, and generally used in health diagnosis and character analysis with its shape and position. The main idea of the proposed method is applying the watershed transform to radial gray scale profile of iris image. The result shows that the lacuna can be extracted automatically from eye image.

  • PDF

DOES LACK OF TOPOGRAPHIC MAPS LIMIT GEO-SPATIAL HYDROLOGY ANALYSYS?

  • Gangodagamage, Chandana;Flugel, Wolfgang;Turrel, Dr.Hagh
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.82-84
    • /
    • 2003
  • Watershed boundaries and flow paths within the watershed are the most important factors required in watershed analysis. Most often the derivation of watershed boundaries and stream network and flow paths is based on topographical maps but spatial variation of flow direction is not clearly understandable using this method. Water resources projects currently use 1: 50, 000-scale ground survey or aerial photography-based topographical maps to derive watershed boundary and stream network. In basins, where these maps are not available or not accessible it creates a real barrier to watershed geo-spatial analysis. Such situations require the use of global datasets, like GTOPO30. Global data sets like ETOPO5, GTOPO30 are the only data sets, which can be used to derive basin boundaries and stream network and other terrain variations like slope aspects and flow direction and flow accumulation of the watershed in the absence of topographic maps. Approximately 1-km grid-based GTOPO 30 data sets can derive better outputs for larger basins, but they fail in flat areas like the Karkheh basin in Iran and the Amudarya in Uzbekistan. A new window in geo-spatial hydrology has opened after the launching of the space-borne satellite stereo pair of the Terra ASTER sensor. ASTER data sets are available at very low cost for most areas of the world and global coverage is expected within the next four years. The DEM generated from ASTER data has a reasonably good accuracy, which can be used effectively for hydrology application, even in small basins. This paper demonstrates the use of stereo pairs in the generation of ASTER DEMs, the application of ASTER DEM for watershed boundary delineation, sub-watershed delineation and explores the possibility of understanding the drainage flow paths in irrigation command areas. All the ASTER derived products were compared with GTOPO and 1:50,000-based topographic map products and this comparison showed that ASTER stereo pairs can derive very good data sets for all the basins with good spatial variation, which are equal in quality to 1:50,000 scale maps-based products.

  • PDF

지하수수질측정망 자료를 이용한 유역단위 지하수 수질등급 평가 (Assessment of Groundwater Quality on a Watershed Scale by Using Groundwater Quality Monitoring Data)

  • 김정직;현윤정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.186-195
    • /
    • 2021
  • In Korea, groundwater quality is monitored through National Groundwater Quality Monitoring Network (NGQMN) administered by Ministry of Environment. For a given contaminant, compliance to groundwater quality standards is assessed on a annual basis by monitoring the number of incidents that concentration exceeds the regulatory limit. However, this approach provides only a fractional information about groundwater quality degradation, and more crucial information such as location and severity of the contamination cannot be obtained. For better groundwater quality management on a watershed, a more spatially informative and intuitive method is required. This study presents two statistical methods to convert point-wise monitoring data into information on groundwater quality status of a watershed by using a proposed grading scale. The proposed grading system is based on readily available reference standards that classify the water quality into 4 grades. The methods were evaluated with NO3-, Cl-, and total coliform data in Geum River basin. The analyses revealed that groundwater in most watersheds of Geum River basin is good for domestic or/and drinking with no treatment. But, there was notable quality degradation in Bunam seawall and So-oak downstream standard watersheds contaminated by NO3- and Cl-, respectively.

가상 유역의 강수 규모 변화에 따른 단위유량도 첨두치의 거동 규명 (Identification of unit hydrograph peak behavior according to changes in precipitation scale in a virtual watershed)

  • 유주환;김주철
    • 한국수자원학회논문집
    • /
    • 제56권10호
    • /
    • pp.655-665
    • /
    • 2023
  • 본 연구에서는 일정한 경사와 조도를 갖는 가상 유역에서 10가지 규모의 강수가 순간적으로 발생할 때 단위유량도를 산출하였다. 그런 다음 강수 규모에 대하여 단위유량도 첨두유량의 관계와 첨두발생시간의 관계를 각각 산출하였다. 이때 강수 규모만이 유역의 단위유량도 첨두치에 주는 영향을 파악하기 위해서 자연 유역을 대신하여 마름모 형태, 일정 경사, 일정 조도의 유로 환경 상태 등으로 단순화한 가상 유역을 적용하였다. 그리고 유역에 내린 강수는 유효우량이고 유출은 직접유출이고 낙하지점에서 출구 방향으로 직선적인 등류로 유출된다고 가정하였다. 강수 규모를 10가지로 유효강수 10 mm, 40 mm, 90 mm, 160 mm, 250 mm, 360 mm, 640 mm, 1,000 mm, 1,210 mm, 1,690 mm의 경우로 하여 단위유량도의 첨두유량과 첨두발생시간을 각각의 관계를 산출하였다. 본 연구에서 주목할 만한 성과는 유역의 저류 효과가 없어도 강수 규모가 커질수록 유출 깊이가 커져서 유역의 유속이 빨라지고 단위 시간당 유하 거리도 커지므로 첨두유량은 커지고 첨두발생시간은 빨라진다는 것이었다. 이는 유역 유출의 비선형적 특성이다.