• Title/Summary/Keyword: Waterproof Time

Search Result 75, Processing Time 0.026 seconds

A Study on Emission Properties of Green House Gas on Duration Combustion of Constructive Wood Materials (건축용 목재의 연소시 지구온난화 가스의 배출특성에 관한 연구)

  • An, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.123-128
    • /
    • 2018
  • MDF was treated on the surface of MDF with fire retardant lacquer, water-soluble flame retardant coat and water-soluble wood cover on the MDF wood, and the pyrolysis characteristics and the atmospheric noxious gas generation characteristics were investigated by using the large capacity thermal analyzer. As a result of investigating pyrolysis and combustion gas generation characteristics after treatment of 0.11 / 11.55 g in terms of mass ratio, it was found that combustion starting time was slightly longer than that of pure MDF in the case of treatment with fire retardant lacquer. The combustion temperature was increased from $340^{\circ}C$ to $450^{\circ}C$. The pyrolysis and combustion gas generation characteristics of the MDF wood treated with the aqueous flame retardant coat showed the changes in combustion starting time and temperature from $260^{\circ}C$ to $542^{\circ}C$ for about 26 minutes at the mass ratio of 0.13 / 11g. Also, when the commercially available waterproof wood cover was treated with 0.13 / 11.55 g of MDF, the sudden weight change tended to increase from $300^{\circ}C$ to $370^{\circ}C$ and showed a second change at approximately $500^{\circ}C$.

An Experimental Study on Water Resistance of Penetrating Water Repellency of Emulsified Silicon Type Exposed In The Outdoor Environment (옥외폭로에 따른 실리콘계 유화형 흡수방지재의 내수성에 관한 실험적 연구)

  • Shim Hyun-Bo;Lee Min-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.477-484
    • /
    • 2004
  • As a part of durability improvement of concrete-structure, penetrating water repellency of liquid type is applied to concrete surface. Besides, a related standard is made recently, but the standard has been prescribe for initial settlement state of penetrating water repellency of liquid type, to the exclusion of performance variation depending time and outdoor environment factor. For measurement of performance variation, we measured the weight of outdoor exposure specimen every regular intervals and check a measured value against a measured value of different condition specimen. Moreover, after the application of penetrating water repellent, measured a adhesive strength in tension between cement-polymer modified waterproof coatings and surface of specimen. The applied penetrating water repellent is a emulsified silicon type with a deep penetration depth. In view of the results so far achieved, the more a Quantity of application and active solid content does get, the deeper penetrating water repellency of emulsion type Penetrate get longer and supplied moisture increase in quantity, a penetrating water repellency of liquid type penetrates more deep, but a quantity of water absorption increase gradually. Perhaps this result is caused by a reduction of active solid content on concrete surface, because active ingredient is moved into the concrete by dissolution.

A Study on Applicability of Embedded Smart Sensor for Concrete Curing Monitoring (콘크리트 양생 강도 모니터링을 위한 매립형 지능형 센서의 적용성 연구)

  • Park, Seung-Hee;Kim, Dong-Jin;Hong, Seok-Inn;Lee, Chang-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.219-224
    • /
    • 2011
  • In this study, a piezoelectric smart sensor that can be embedded inside of concrete structures is developed to investigate the early stage of concrete curing. A waterproof coating is used to protect the piezoelectric sensor from moistures of concrete mixture. Also, a mortar case is utilized to encapsulate the sensor to protect it from impact loads. To estimate the strength of concrete, a self-sense guided-wave actuated sensing technique is applied. In the guided wave, its velocity is varied according to the mechanical properties of concrete such as modulus of elasticity. Because modulus of elasticity directly affects the strength of concrete, the guidedwave's velocity also affects the concrete strength development. To verify the feasibility of using the proposed approach, the smart sensor was embedded into a 100MPa concrete cylinder and the self-sense guided wave is continuously measured throughout the curing process. The measurements showed that the propagation time (TOF) of the measured guided waves gradually decreased as the curing age increased. Especially, at the early age of the curing process, the variation of the TOF was very significant. Furthermore, the results showed that there is a linear relationship between the TOF of the self-sense guided waves and the strength of concrete existed. It is safe to conclude that the proposed approach can be used very effectively in monitoring of the strength development of high strength concrete structures.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

A study on application of inflatable structure system for rapid blocking of sudden water in submerged floating tunnels (해중터널 내 돌발용수 급속차폐를 위한 팽창시스템 적용에 관한 연구)

  • Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.469-484
    • /
    • 2020
  • This study focused on shielding through inflatable structure in the event of sudden water inflow into the submerged floating tunnels. Currently, there is a lack of measures to deal with unexpected water in tunnels in Korea. Although water treatment facilities such as waterproofing and floodgates in tunnels are installed, there are limitations to the sudden inflow of large amounts of seawater or underground water. Also, floodgates cannot respond quickly to sudden damage due to slow blocking time. Accordingly, a study was conducted on the shielding rate and axial movement distance for inflatable structure. The results of the reduced model experiment confirmed that the number of inflatable structure and internal pneumatic pressure influence on the shielding rate. As the number of inflatable structure increased from one to two, the shielding rate increased by about 35 up to 40 percent. It was also confirmed that the shielding rate increased by about 4 percent as the internal pneumatic pressure increased from 0.2 bar to 0.3 bar. If we verify and further develop the results identified in this study through a real-size experiment, it will be able to be used as an effective waterproof measure for sudden water inflow into the undersea tunnels or underwater tunnels.

Behavior Characteristics of Cement Bentonite Impervious Walls Related to Mixing Methods and Curing Time (강화벤토나이트 차수벽체의 배합방법 및 양생일에 따른 거동 특성)

  • Hwang, Jungsoon;Kim, Seungwook;Jung, Jungi;Lee, Seungjoo;Oh, Byeungsam;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.45-54
    • /
    • 2016
  • In this study, the construction method of new underground continuos impervious wall that the bentonite slurry keeps the stability of excavated trench and the mixture of cement and bentonite plays a role as a constituent of impervious wall in the trench. The merit of homogeneity of the method so called as a cement-bentonite slurry wall enables to accurately make an estimation of hydraulic conductivity of the walls compared with that by other general grouting methods and to verify their waterproof efficiency without difficulty at the design stage. The use of cement-bentonite slurry walls for the containment of groundwater flow has also proven a cost-effective impervious wall technology by employing the simple combination of construction equipments and easy and fast construction procedures. The engineering characteristics of cement-bentonite impervious wall obtained by carrying out the laboratory experiments under various conditions. This study reveals the effect of variation of constituent materials and their mixing methods (Water-Cement-Bentonite) on the engineering characteristics of a composition. Also, this study makes some recommendations on the optimum mixing ratio and mixing sequence for the best quality at the site. That is the most important factors to estimate the construction cost and design of the technique. The comparison is lastly made to evaluate the effect of ordinary Portland and blast furnace slag cement as a bonding material on the behavior of impervious walls.

A Study on the Ground Reinforcement of Jeju Scoria Layer by Chemical Grouting (약액주입에 의한 제주도 송이지층의 지반보강에 관한 연구)

  • Yang, Kiho;Park, Jeongjun;Kim, Younghun;Byun, Yoseph;Lee, Eunjong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • Recently, public works becoming bigger in Jeju are implemented various kinds of ground reinforcement method including the chemical grouting method. In this study, we have been investigated on the proper material and the injection condition for the excellent injection effect and the excellent strength of injection material and the permanent waterproof and reinforcement through the experiment. The kind of injection material has been selected through the uniaxial compression test and the endurance test of injection material as the chamber test. An experiment was performed with model ground made of scoria, the injection performance of selected material has been identified through the evaluation test of injection range using the decision test of injection amount and the calibration chamber test. As a result of test, it has been analyzed that MSG appeared to have the excellent strength, durability and injection performance all compared with the ordinary cement, this result is judged to be possible as the ancillary data of design at time of design and construction with the chemical grouting method in the future.

Derivation of Flood Hazard Curves for SOC Facilities under Local Intensive Precipitation (LIP(극한강우) 조건하에서 중요 SOC 시설물에 대한 재해도 곡선 작성)

  • Kim, Beom Jin;Han, Kun Yeun*
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.183-194
    • /
    • 2019
  • In recent years, the risk of external flooding of major national facilities has increased significantly since 2000 due to the increase in local heavy rainfall events. For important domestic national facilities, it is necessary to analyze the risk of external flooding as flooding in major sites due to heavy rain can cause functional paralysis in major facilities and ultimately lead to massive trouble events. In order to manage the safety of main facilities and its related facilities at a high level, it is necessary to analyze the degree of disaster such as flood depth, flood flow rate, flood time and flood intensity when extreme floods (LIP) are introduced. In addition, the degree of vulnerability of these related facilities should be assessed and risk assessments should be reassessed through linkage analysis that combines the degree of disaster and vulnerability. By calculating a new flood hazard curve for the flood depth and flood intensity in major national facilities under the heavy rainfall conditions through this study, it is expected to be a basis for the waterproof design of important SOC facilities, flood prevention function design, advancement of flood prevention measures and procedures and evaluation of flood mitigation functions.

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

Lacquer as Adhesive : Its Historical Value and Modern Utilization (접착제로서의 옻; 역사성과 현대적 활용)

  • Jang, Sung Yoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.114-125
    • /
    • 2016
  • Lacquer is one of the most widely used natural resin in East Asia since Neolithic Age. As a major ingredient of lacquerware, lacquer is waterproof, insect-proof and rot-proof to be durable and anti-abrasion, generally utilized for mainly painting purpose. According to lacquerware excavated from several sites of Japan and China, lacquerware seems to appear in Neolithic Age. On the other hand in case of excavation research in Korea, lacquerwares are found after the Bronze Age. The initial purpose of lacquer is estimated to be adhesive, regarding the literatures mentioning bitumen(Yeoksceong ), animal glue(Kyeo) and egg alumen(Nanbaek). Especially piece of jar coffin unearthed in Pyeongtaek Daechu-ri site had trace of restoration by lacquer and hemp as an evidence of lacquer for adhesion in Pre-Three Kingdoms period. Since then a trend to restore the broken ceramics with lacquer and decorate with golden foil lasted especially in Joseon Dynasty. In the field of gold plated lacquer method, mother-of-pearl inlaying technique for lacquerware and restoration of buildings, lacquer is still used as adhesive. Due to matter of reversibility lacquer is being avoided for conservation and restoration of cultural heritage. Lacquer as a traditional material for adhesive since ancient times, however, has advantage in adhesion strength and durability. Because synthetic resin adhesive has problem of emission of volatile organic compounds and aging over time, lacquer receives attention recently. On the contrary, by combination adhesive from mixing lacquer and animal glue, already proved the possibility of applicability and chemical modification. A research to utilize lacquer as modern paint or functional material is also conducted continuously also in China and Japan. To put traditional material into practical use and modernize, chemical research from the molecular level of the lacquer is necessary in the near future.