• Title/Summary/Keyword: Waterborne Acrylic Polyurethane Dispersion

Search Result 7, Processing Time 0.02 seconds

Effect of Types of Acrylic Monomers on Properties of Anti-static Waterborne Acrylic Polyurethane Dispersion (아크릴 단량체 종류 변화가 대전방지용 수분산 아크릴 폴리우레탄의 물성에 미치는 영향)

  • Huh, Woo Young;Yun, Dong Gu;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.451-458
    • /
    • 2014
  • Waterborne polyurethane dispersion (WPUD) was prepared from polycarbonate diol (PCD), isophorone diisocyanate (IPDI) and dimethylol propionic acid (DMPA) as starting materials. Then, waterborne acrylic polyurethane dispersion (AUD) was synthesized by reacting the WPUD with different types of acrylate monomers, such as methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA) and butyl acrylate (BA). Subsequently, the AUD was mixed with multi-walled carbon nanotube (MWCNT) to yield a conductive coating solution, and the mixture was coated on the polycarbonate substrate. The pencil hardness, abrasion resistance and chemical resistance of the coating films from AUD were improved than those from WPUD, while the electrical conductivity of the coating films from AUD was decreased than that of WPUD. Also, the effect of acrylate types on the properties of coating films was investigated. The AUD obtained from HEMA showed the strongest pencil hardness, while the AUD obtained from MMA exhibited the strongest abrasion resistance, chemical resistance and electrical conductivity among several types of acrylate monomers.

Preparation of Conductive Coating Solutions by Blending Waterborne Acrylic Polyurethane Dispersion with Carbon Nanotube (수분산 아크릴 폴리우레탄과 탄소나노튜브의 혼합에 의한 전도성 코팅용액 제조)

  • Huh, Woo Young;Yun, Dong Gu;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.73-79
    • /
    • 2013
  • Waterborne polyurethane dispersion (WPUD) was synthesized from polycarbonate diol (PCD), isophorone diisocyanate (IPDI) and dimethylol propionic acid (DMPA) as starting materials. Then, waterborne acrylic polyurethane dispersion (AUD) was synthesized by reacting the WPUD with an acrylate monomer, methyl methacrylate (MMA). Subsequently, the AUD was mixed with multi-walled carbon nanotube (MWCNT) to yield a conductive coating solution, and the mixture was coated on the polycarbonate substrate. With increasing the amount of MMA in the AUD, the pencil hardness, abrasion resistance and chemical resistance of the coating films were improved, but the electrical conductivity of the coating films was decreased. On the other hand, the pencil hardness, abrasion resistance and chemical resistance of coating films were decreased, but the electrical conductivity was enhanced with increasing the amount of MWCNT in the conductive coating solutions.

Preparation of Silylated Acrylic Polyurethane Dispersion Using Aminopropyl Triethoxysilane and Acrylate Monomers (Aminopropyl Triethoxysilane과 아크릴 단량체를 이용한 Silylated Acrylic Polyurethane Dispersion의 제조)

  • Kim, Byung Suk;Yun, Dong Gu;Yoo, Byung Won;Lee, Myung Goo;Byun, Tae Gang;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.639-645
    • /
    • 2012
  • Waterborne polyurethane dispersion (PUD) was synthesized by capping the NCO groups of polyurethane prepolymers, prepared from isophorone diisocyanate, polycarbonate diol and dimethylol propionic acid, with aminopropyl triethoxysilane (APS). Subsequently, silylated acrylic polyurethane dispersion was synthesized by reacting the PUD with the mixture of acrylate monomers, 2-hydroxyethyl methacrylate and methyl methacrylate. The average particle size of silylated acrylic polyurethane dispersion, measured by the dynamic light scattering method, was increased from 39.0 nm to 399.8 nm by increasing the addition amounts of APS. Also, the pencil hardness of coating films of silylated acrylic polyurethane dispersion was enhanced from B grade to F grade with increasing APS content.

Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

  • Jin, Chung Keun;Lim, Sung Hyung
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.207-212
    • /
    • 2015
  • The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

Effect of Addition Amounts of Hydroxyethyl Methacrylate and Methyl Methacrylate on the Properties of Waterborne Polyurethane-Acrylic Hybrid Solutions (Hydroxyethyl Methacrylate와 Methyl Methacrylate의 첨가량 변화가 수분산 폴리우레탄-아크릴 혼성 용액의 물성에 미치는 영향)

  • Kim, Byung Suk;Yoo, Byung Won;Lee, Myung Goo;Byun, Tae Gang;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.632-638
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, waterborne polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different amounts of the mixture of acrylate monomers, HEMA (2-hydroxyethyl methacrylate) and MMA (methyl methacrylate). As a result, the average particle size of waterborne polyurethane-acrylic hybrid solutions was increased with increasing the addition amounts of acrylate monomers. Also, the prepared coating films from waterborne polyurethane-acrylic hybrid solutions showed better abrasion resistance and chemical resistance than those of pure PUD.

Preparation of Waterborne Polyurethane-Acrylic Hybrid Solutions from Different Types of Acrylate Monomers (아크릴 단량체의 종류 변화에 의한 수분산 폴리우레탄-아크릴 혼성 용액의 제조)

  • Kim, Byung Suk;Hong, Min Gi;Yoo, Byung Won;Lee, Myung Goo;Lee, Woo Il;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.410-416
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different types of acrylate monomers, such as HEMA (2-hydroxyethyl methacrylate):MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:BMA (butyl methacrylate), HEMA:HEA (2-hydroxyethyl acrylate), HEMA:PETA (pentaerytritol triacrylate) mixture. Also, the effects of acrylate types on the chemical resistance and the abrasion resistance of polyurethane-acrylic hybrid solutions were investigated. The test results showed that the HEMA:MMA mixture had the strongest chemical resistance, while the HEMA:PETA mixture had the strongest abrasion resistance among several types of acrylate mixtures.

Effect of Types of Acrylate Monomers on the Properties of Waterborne Polyurethane Dispersion (아크릴 단량체 종류 변화가 수분산 Polyurethane Dispersion의 물성에 미치는 영향)

  • Shin, Yong Tak;Hong, Min Gi;Kim, Byung Suk;Lee, Won Ki;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.548-553
    • /
    • 2011
  • NCO terminated polyurethane prepolymers were synthesized from isophorone diisocyanate(IPDI), polycarbonate diol(PCD) and dimethylol propionic acid(DMPA). Subsequently, acrylic terminated polyurethanes were prepared by capping the NCO groups of polyurethane prepolymers with different types of acrylate monomers, such as 2-hydroxyethyl methacrylate(HEMA), 2-hydroxyethyl acrylate(HEA) and pentaerythritol triacrylate(PETA). The average particle sizes of the acrylic terminated polyurethane solutions were increased by capping acrylate monomers. Also, the prepared coating films showed better abrasion resistance and pencil hardness than those of pure waterborne polyurethanes. The coating film with PETA exhibited the best abrasion resistance and pencil hardness of coating films prepared with three acrylate monomers.