• Title/Summary/Keyword: Water-to-refrigerant

Search Result 211, Processing Time 0.021 seconds

Characteristic of Refrigerant for Heat-treatment Deformation Control of SM45C Steel (SM45G강의 열처리변형 제어를 위한 냉각매질의 특성)

  • Lyu, S.;Nam, T.;Ahn, M.;Park, J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.330-336
    • /
    • 2000
  • This study deals with the characteristic of refrigerant for heat-treatment deformation control of SM45C steel. The control of heat-treatment deformation must need the progress of production parts for a landing gear. Most of the deformation is occurred on unequal cooling. The unequal cooling is occurred by a property of quenching refrigeration. When a heated metal is deposited in the refrigeration, the cooling speed is so slow in early period of cooling because of occurring a steam-curtain. After more cooling, the steam-curtain is destroyed. In this progress, the cooling speed is very fast. The object of this study is to control the deformation of heat-treatment for landing gear by improving the conditions of quenching. The cooling curves and cooling rates of water, oil and polymer solution are obtained and illustrated. From the characteristics of the quenching refrigerant, the effects of heat-treatments on thermal deformation and fatigue strength are also investigated.

  • PDF

Heat Transfer Characteristics During Gas Cooling Process of Carbon Dioxide in a Horizontal Tube (수평관내 초임계 영역의 Co2 냉각 열전달 특성)

  • Son, Chang-Hyo;Lee, Dong-Gun;Oh, Koo-Kyu;Jeong, Si-Young;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flowmeter, an evaporator, and a gas cooler(test section). The main components of the water loop consist of a variable-speed pump, an isothermal tank, and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal stainless steel tube of the outer diameter of 9.53mm and of the inner diameter of 7.75mm. The length of the test section is 6m. The refrigerant mass fluxes were 200∼300kg/(m2$.$s) and the inlet pressure of the gas cooler varied from 7.5㎫ to 8.5㎫. The main results were summarized as follows : Pressure drop of CO2 increases with increasing gas cooler pressure. The friction factors of CO2 in a horizontal tube show a relatively good agreement with the correlation by Blasius. The heat transfer coefficient of CO2 in transcritical region increases with decreasing gas cooler pressure and decreasing mass flux of CO2. Most of correlations proposed in a transcritical region showed significant deviations with experimental data except for those predicted by Gnielinski.

The Characteristics of Cooling Performance on 7RT Ammonia Absorption System (7RT급 암모니아 흡수식 냉온수기의 냉방성능 특성)

  • Lee, Ho-Saeng;Jin, Byoung-Ju;Yoon, Jung-In;Hwang, Jun-Hyeon;Jin, Slm-Won;Kyung, Ick-Soo;Erickson, Donald C
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.433-438
    • /
    • 2009
  • Experimental results for performance characteristics of small $NH_3$ absorption chiller/ heater are presented. The apparatus consists of 7RT water-cooled absorption system, solution pump, boiler, cooling tower and peripheral devices. The effect of experimental parameters, such as refrigerant mass flow rate, solution mass flow rate and cooling water temperature have been investigated in view of the system performance. The capacity of each heat exchanger increased as refrigerant mass flow rate increased in cooling mode. Also, a cooling capacity increased as a strong solution mass flow rate increased. The cooling and heating COP show 0.5, 1.5 regardless of refrigerant mass flow rate, respectively. The results focus on the evaluation for performance characteristics of system with respect to variation of refrigerant mass flow rate under standard design conditions.

Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region (초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

Precision Control of Water Bath Temperature using Air Cooled Variable Refrigerant Flow Chiller (공랭식 변유량 냉매 냉동기를 적용한 수조 온도의 정밀 제어)

  • Jeong, Kwang-Ju;Kim, Young Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 2018
  • This study compared constant water bath performances of conventional water-cooled refrigerator and electric heater with an air-cooled VRF chiller and electric heater equipped with optimal control algorithm. In heating mode, the air cooled VRF chiller and electric heater combination reduced the set temperature arrival time by an average of 42 minutes, and energy was also reduced by 18%. In cooling mode, the two systems took 70 minutes to reach the set temperature and showed no difference. Energy was reduced by 33.5% with the new system. For constant temperature maintaining experiment, after reaching the set temperature of $15^{\circ}C$, $20^{\circ}C$ and $22^{\circ}C$, temperature deviations were all in the range of $-0.2^{\circ}C$ to $+0.1^{\circ}C$. Energy was reduced by an average of 84.9%. Through this study, possibility of precise temperature control by an air cooled VRF chiller system was confirmed.

Operating Characteristics of Ammonia-Water Absorber Heat Exchange Cycle (암모니아-물 흡수식 열교환 사이클의 운전 특성)

  • 강인석;김남진;김종보
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.357-362
    • /
    • 2001
  • A bench type ammonia-water absorber heat exchange cycle was tested by varying the system charging concentration, refrigerating valve opening and weak solution flow rate. It was observed that the cooling capacity was increased as the system charging concentration was increased. Optimum system charging concentration was found for the coolong capacity of the system. The opening rate of refrigerant expansion valve had a direct influence on the refrigerant sub-cooling at the condenser outlet. Optimum sub-cooling was found to be 0~4$^{\circ}C$. As the weak solution flow rate increased the concentration of strong solution and the evaporating pressure decreased. There existed a optimum weak solution flow rate which maximized the cooling capacity and COP.

  • PDF

Experimental study on the production of spherical ice particles using water as refrigerant (물을 냉매로 하는 구형 얼음입자 제조에 관한 실험적 연구)

  • 신흥태;김민형;이윤표;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.475-482
    • /
    • 1998
  • In this paper, an experimental study was conducted to investigate the performance of the spherical ice particle production system which uses the technology of water spray in a vacuum chamber for increasing the heat transfer area. As a result, following conclusions were obtained. The diffusion-controlled evaporation model agreed relatively well with experiments. The spray flow rate influences the performance of the system rather than any other factors, for example, the spray nozzle position, the nozzle number. As the spray rate increases, the system efficiency increases. It is due to the entrainment of small droplets among the spray with the exhausted vapor. Thus the system should be designed and operated to prevent the entrainment. Assuming the compressor efficiency to be 70%, the COP of the system reaches highly up to 6 at a maximum spray rate. Under the conditions, however, the rigid ice layer is obtained because ice particles bond together with increase of the spray rate. Therefore, the spray rate should be controlled properly to make the spherical ice particles.

  • PDF

Evaporation Heat Transfer and Pressure Drop Characteristics of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park, Jae-Hong;Kim, Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2284-2293
    • /
    • 2004
  • The evaporation heat transfer coefficient h$\_$r/ and frictional pressure drop Δp$\_$f/ of refrigerant R-134a flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the oblong shell and plate heat exchanger by four plates of geometry with a corrugated sinusoid shape of a 45 chevron angle. Upflow of refrigerant R-134a boils in two channels receiving heat from downflow of hot water in other channels. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R-134a were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the evaporation heat transfer coefficient h$\_$r/ and pressure drop Δp$\_$f/ increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the h$\_$r/ and Δp$\_$f/. But the effect of the average heat flux does not show significant effect on the h$\_$r/ and Δp$\_$f/. Finally, at a higher saturation temperature, both the h$\_$r/ and Δp$\_$f/ are found to be lower. The empirical correlations are also provided for the measured heat transfer coefficient and pressure drop in terms of the Nusselt number and friction factor.

The Heat Transfer and Pressure drop Characteristics of R7l8 in Small Diameter Tubes (세관내 액단상의 열전달과 압력강하에 관한 연구)

  • 김세웅;홍진우;손창효;노건상;오후규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.28-35
    • /
    • 2001
  • The heat transfer and pressure drop characteristics of R718 flowing in smooth horizontal copper tubes with inner diameter of 3.36 mm, 5.35 mm, 6.54 mm and 8.12 mm were investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. Experiments were peformed for the flowing range of variables : Reynolds number (1000 to 20000), mass flow rate of brine (450 kg/h) and refrigerant temperature (5$0^{\circ}C$). The main results were summarized as follows : (1) The heat transfer coefficient of 3.36 mm ID was about 10% to 30% higher than that of 5.35 mm, 6.54 mm and 8.12 mm ID, and the heat transfer coefficients for small diameter. tubes are about 20% to 27% higher than these predicted by Gnielinski. The new correlation is proposed to predict the experimental data. (2) As a result of comparison with correlation prosed by Blasius. the deviation of the experimental data slightly increased as the tube diameter decreased. (3) The ratio of heat transfer to friction factor (j/f) correlated by all experimental data increased as the tube diameter decreased.

  • PDF

Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger (Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구)

  • Kim, Sung Woo;Baek, Changhyun;Song, Kang Sub;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.