• 제목/요약/키워드: Water-to-refrigerant

검색결과 210건 처리시간 0.028초

2단압축 냉동장치의 성능특성에 관한 실험적 연구 (An Experimental Study on Performance Characteristics of Two-Stage Compression Refrigeration Systems)

  • 김재돌;오후규;김성규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.25-32
    • /
    • 1994
  • The characteristics of the R-22 two-stage compression refrigeration systems were investigated. The apparatus consisted of 0.5HP and 1HP hermetic reciprocating compressors for the high and low stage sides respectively, a condenser, an evaporator, a heat exchanger, four expansion valves, and two intercoolers. The experiments covered a range of refrigerant flow rates from 24 to 84kg/h, and the inlet temperature of cooling water in the condenser and heat source water in the evaporator ranged from 20 to 30$^.\circ}C$The results Showed that the refrigerant flow rate had greater effect on the refrigerating capacities, the compression efficiency and the coefficient of performance of two-stage compression systems than the inlet temperature of heat source water. And all these values were decreased with increasing inlet temperatures of the cooling water. The pressure drops in the evaporator of two-stage compression systems were decreased in proportion to the increase in the inlet temperature of the heat source and cooling water, but it was increased by the refrigerant flow rate.

  • PDF

증발기의 압력강하에 대한 상대습도의 영향 (Effects of Relative Humidity on the Evaporator Pressure Drop)

  • 김창덕;강신형;박일환;이진호
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

셀 앤 플레이트 열 교환기에서의 R-410A 증발열전달에 관한 실험적 연구 (Experimental Study on R-410A Evaporation Heat Transfer Characteristics in Shell and Plate Heat Exchanger)

  • 김인관;김영수;박재홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.49-59
    • /
    • 2005
  • The evaporation heat transfer experiments are conducted with the shell and plate heat exchanger (S&PHE) without oil in the refrigerant loop using R-410A. An experimental refrigerant loop has been established to measure the evaporation heat transfer coefficient h. of R-410A in a vertical S&PHE. Two vertical counter flow channels were formed in the S&PHE by three plates haying a corrugated trapezoid shape of a $45^{\circ}C$ chevron angle. UP flow of the boiling R-410A in one channel receives heat from the hot down flow of water in the other channel The effects of the refrigerant mass flux. average heat flux. refrigerant saturation temperature and vapor qualify are explored in detail. Similar to the case of a plate heat exchanger. even at a very low Reynolds number, the flow in the S&PHE remains turbulent. The Present data shows that the evaporation heat transfer coefficients of R-410A increased with the vapor qualify. The results indicate a rise in the refrigerant mass flux caused an increase in the h.. Raising the imposed wall heat flux is found to slightly improve h., while h, is found to be lower at a higher refrigerant saturation temperature. Based on the present data. empirical correlation of the evaporation heat transfer coefficient is proposed.

냉매 충전량과 팽창장치 변화에 따른 열펌프 시스템의 성능특성에 관한 연구 (The Performance of a Heat Pump with a Variation of Expansion Valve at Various Charging Conditions)

  • 최종민;김용찬
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.661-666
    • /
    • 2003
  • Constant area expansion devices such as capillary tubes, short tube orifices are being gradually replaced with electronic expansion valves (EEVs) because of increasing focus on comfort and energy conservation. In this study, the performance of a water-to-water heat pump as a function of refrigerant charge is investigated in steady state, cooling mode operation with expansion devices of a capillary tube and an EEV. The performance of the capillary tube system varies drastically according to the change of refrigerant charge amount and inlet temperature of the secondary fluid in the condenser. Cooling capacity and COP of the EEV system show little dependence on the refrigerant charge, while those are strongly dependent on the secondary fluid temperature at the condenser inlet. In general, for a wide range of operating conditions the EEV system shows much higher performance as compared with the capillary tube system. The performance of the EEV system can be optimized by adjusting EEV opening to maintain a constant superheat at all test conditions.

세관내 R-22 대체냉매의 응축열전달에 관한 연구 (The Condensation Heat Transfer of Alternative Refrigerants for R-22 in Small Diameter Tubes)

  • 손창효;정진호;오종택;오후규
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.180-186
    • /
    • 2001
  • The condensation heat transfer coefficients of pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube were investigated. The experiment apparatus consists of a refrigerant loop and a water loop. The main components of the refrigerant loop consist of a variable-speed pump, a mass flowmeter, an evaporator, and a condenser(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flowmeter. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal copper tube of 3.38mm outer diameter and 1.77mm inner diameter. The length of test section is 1220mm. The refrigerant mass fluxes varied from 450 to 1050kg/(㎡$.$s) and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main results were summarized as follows ; in the case of single-phase flow, the heat transfer coefficients increase with increasing mass flux. The heat transfer coefficient of R-410A was higher than that of R-22 and R-134a, and the heat transfer for small diameter tubes were about 20% to 27% higher than those predicted by Gnielinski. In the case of two-phase flow, the heat transfer coefficients also increase with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22 and R-134a. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.

PID 제어를 이용한 멀티형 열펌프의 용량조절 (Capacity Modulation of a Multi-Type Heat Pump System Using PID Control)

  • 정대성;김민성;김민수;이원용
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF

퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절 (Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic)

  • 김세영;김민수
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성 (Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube)

  • 유태근;김대희;노건상;구학근;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

탄화수소계 냉매를 이용한 수냉식 히트점프의 성능특성에 관한 연구 (Study on Performance Characteristic of Water-Cooled Type Beat Pump Using Hydrocarbon Refrigerants)

  • 전철호;이호생;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.870-876
    • /
    • 2005
  • This study of the performance characteristics of natural refrigerants such as R-290 (propane), R-6OOa (iso-butane) and R-1270 (propylene) has investigated to compare with conventional HCFC's refrigerant R-22 for water-cooled heat pump system. The experimental apparatus has basic parts of cycle that uses the water as a heat source. The Performance of the water-cooled system using hydrocarbon refrigerants had been getting better than R-22 from start-up to the similar evaporating temperature after stabilizing system. Through the above it is possible that hydrocarbon refrigerants could be drop-in alternatives for R-22.

R245fa 냉매를 이용한 배열회수 히트펌프 시스템 성능에 관한 실험적 연구 (Experimental Study on the Performance of Heat Recovery Heat Pump System using R245fa Refrigerant)

  • 김현택;김용찬;차동안;권오경
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.408-413
    • /
    • 2016
  • The objective of this study is to investigate the performance of a heat recovery heat pump dryer using a R245fa refrigerant experimentally. In this study, the main components of the heat pump dryer were an evaporator, a compressor, a condenser, and an expansion valve. As a result, when the amount of refrigerant varied from 15 kg to 16 kg, the hot air outlet temperature in the condenser and the heat transfer rate were almost kept constant. Therefore, the amount of refrigerant at 16 kg was considered to be a suitable amount in the heat pump. As the air inlet velocity varied from 0.5 m/s to 1.5 m/s, the highest temperature in the condenser could be obtained when the air inlet velocity was 0.5 m/s. The heat transfer rate, system (COP), and hot air outlet temperature were 5.6 kW, 3.4, and $102.5^{\circ}C$, respectively, when the bypass ratio and water temperature were 0% and $60^{\circ}C$.