정수장에서 생산한 수돗물이 수용가까지 안전하게 공급하기 위해서는 관내 및 배수지 등의 공급과정에서 철저한 수질관 리가 필요하다. 그러나 배수지의 수질관리 및 모니터링이 전혀 이루어지지 않고 있다. 최근 정부는 먹는 물에 대한 수질관리기준을 강화하고 있으나, 먹는 물에 대한 수질측정 기반기술은 미국, 일본, 독일 등에 비하여 매우 빈약하다. 특히 수질 검사 및 분석기기의 핵심은 센서이나 이들 센서에 대한 기술이 매우 부족하다. 본 논문에서는 국내 먹는 물 수질관리에 대한 관계 법령 및 규정을 분석하고, 먹는 물 수질측정 기준에 적합한 pH, 전도도, 잔류염소, 탁도 및 수온에 대한 센서 및 측정기기의 최적 성능기준을 제안하고, 대표적인 전극센서인 pH, 전도도 및 잔류염소 센서의 상호간섭 및 영향을 분석한다.
U-city 등에서 원격 디지털 수도 검침 시스템의 수요가 증가하고 있다. 디지털 수도 미터는 센서의 종류에 따라 다양한데 홀센서를 사용한 방식은 정밀도가 높다는 장점이 있으나 기존의 알고리즘은 전력소모가 큰 것이 단점이다. 본 논문에서는 정밀도를 유지하면서 저전력 소모를 추구하는 센싱 알고리즘을 제시한다. 우리의 방식은 물의 사용 여부를 정밀도는 떨어지나 전력소모가 작은 홀센서를 이용하여 센싱하는 것이다. 물이 사용되기 시작하면 정밀도가 높은 홀 센서를 사용하여 사용량을 계측한다. 우리의 알고리즘이 기존의 방식보다 전력소모를 2배 가량 줄일 수 있음을 분석을 통하여 보였다.
본 연구는 다양한 인간의 활동으로 인해 공공수역에 영양물질이 유입됨에 따라 발생하는 부영양화를 초기에 대응하기 위해 T-P (Total Phosphorus) 예측을 진행하였다. 기존의 T-P 모니터링 시스템은 인력 및 시간이 많이 소요되는 단점이 존재해 직독식 센서를 활용한 측정이 국내외를 막론하고 많이 시도되고 있는 추세이다. 따라서 직독식 센서를 통해 얻을 수 있는 수질항목을 활용하여 T-P 예측을 진행하였으며, 두 단계로 나누어 진행하였다. T-P 예측에 있어 Turbidity (Tur)의 중요성에 대해 살펴보았으며, 자동수질분석기 분석항목을 추가한 분석을 통해 직독식 센서 측정 항목만으로 T-P 예측이 가능한지 살펴보았다. 본 연구의 연구 대상 지점인 낙동강 유역 내 T-P 현황을 살펴본 결과, T-P 농도가 상류 지역 대비 중·하류 지역에 높게 나타났다. Pearson 상관분석을 통해 지점별로 T-P와 상관성이 높은 수질항목을 파악하였으며, 이를 활용하여 다중선형회귀분석을 진행하여 T-P를 예측하였다. Tur의 유무에 따른 분석을 진행하였으며, 자동수질분석기 분석항목이 포함된 분석을 통해 직독식 센서 측정 항목과의 성능을 비교하였다. 결과적으로 Tur 활용의 중요성을 확인하였으며, 이는 부영양화 개선 대책 수립을 위한 보조 자료로 활용할 수 있을 것으로 판단된다.
Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.
우리가 일상적으로 마시는 수돗물의 경우 수질의 오염에 대한 시민들의 불신은 매우 높은 편이다. 또한 수돗물의 수질오염사고는 예측이 어렵고 그 위험이 커서 실시간 모니터링과 관리가 필요하다. 따라서 사물인터넷을 이용한 실시간 수질 모니터링의 도입이 필요한 분야라 할 수 있다. 잔류염소는 다른 소독제보다 잔류성 및 경제성이 우수하고 잔류효과 확인이 쉬워 상수도에서 주로 소독 지표로 활용되는데 수돗물의 안전성을 확보하는 차원에서 사물인터넷기술을 이용하여 실시간으로 감시가 가능하다. 본 연구에서는 전류법 센서를 이용하여 실시간 수질 모니터링을 위한 스마트 디바이스를 개발하고 그 성능을 분석하였다.
Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권1호
/
pp.46-63
/
2024
One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.
기존의 순환여과식 양식장에서는 전문 인력의 부족, 수입 측정 장비에 대한 높은 의존도 등으로 인하여 많은 어려움을 격고 있다. 이에 본 논문에서는 최신 IoT기술을 적용한 광학식 센서(pH, DO)를 이용하여 양식장 수조 내 오염도를 빠른 시간내에 측정할 수 있는 자동 수질 측정 시스템을 구현하고자 한다. 기존 시스템의 문제점은 양식장 수조를 사람이 일일이 확인하거나, 측정 장비를 수조 속에 넣고 직접 측정을 하여 물고기의 생육에 좋지 않은 영향을 주는 것이다. 본 논문에서는 시스템은 측정 장비를 수조 속에 담그지 않고 간접 측정을 하는 방식을 제안하고 염분 및 다수의 오염 물질이 포함된 환경에서도 양식장 내의 물고기의 생육에 영향을 주지 않고 지속적인 측정이 가능한 시스템을 개발하였다.
오늘날, 세계 인구성장률의 증가로 국제사회는 심각하게 식량문제 해결을 논의하고 있다. 식량문제 해결을 위한 대안으로는 양식산업이 대두되고 있다. 최근 양식산업의 혁신성장을 위해 4차 산업기술을 융합한 스마트 양식장이 보급되고 있으며, 전주기적 디지털화가 추진되고 있다. 양식산업에서 중요한 수질센서는 전기화학방식의 휴대용 센서를 사용하고 있으며, 이를 이용하여 개별적, 간헐적으로 수질을 체크하고 있어서 양식장 수질을 실시간 분석하고 관리하기가 불가능하다. 최근 광학 기반의 모니터링이 가능한 수질센서들이 개발되어 현장에 적용되고 있다. 그러나 수질센서의 상태정보를 알 수 없기 때문에 모니터링 데이터의 신뢰성을 보장할 수 없는 상황이다. 따라서, 본 논문에서는 데이터의 신뢰성을 확보할 수 있도록, 수질센서가 수집하는 모니터링 데이터를 기반으로 고장, 기준일탈, 유지보수, 점검 등의 수질센서 자가진단 상태를 파악할 수 있는 알고리즘을 제안한다.
The unit-water content of concrete is one of the important factors in determining the quality of concrete and is directly related to the durability of the construction structure, and the current method of measuring the unit-water content of concrete is applied by the Air Meta Act and the Electrostatic Capacity Act. However, there are complex and time-consuming problems with measurement methods. Therefore, high frequency moisture sensor was used for quick and high measurement, and unit-water content of mortar was evaluated through machine running and deep running based on measurement big data. The multi-input deep learning model is as accurate as 24.25% higher than the OLS linear regression model, which shows that deep learning can more effectively identify the nonlinear relationship between high-frequency moisture sensor data and unit quantity than linear regression.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.