• Title/Summary/Keyword: Water-passing capacity

Search Result 18, Processing Time 0.033 seconds

Assessment of lining load for drainage type cable tunnel considered water-passing capacity of tunnel filter material (부직포 통수능을 고려한 배수형 전력구터널의 라이닝 하중산정)

  • Kim, Dae-Hong;Kim, Kyoung-Yul;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1369-1376
    • /
    • 2005
  • In case of the drainage type tunnel, the residual water pressure is likely to act on the tunnel lining due to the decrease of water-passing capacity of the filter material. Therefore, this study discussions a method to predict the lining load with the consideration of water passing capacity of the filter material through the literature review and numerical analysis. It is expected from the results of case studies that the design load acting on the concrete lining in the drainage type tunnel could be assumed to be about 50% of the hydrostatic water pressure in steady-state ground-water condition.

  • PDF

Adsorption of Trichloroethylene in Water by Coconut Carbon and Coconut Activated Carbon (야자껍질 탄화탄과 야자껍질 활성탄에 의한 수중 Trichloroethylene의 흡착에 관한 연구)

  • 김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.25-32
    • /
    • 1993
  • Granular activated carbon is commonly used in fixed-bed adsorbers to remove organic chemicals. In this experiment organic chemical solutions were prepared by adding the reagent grade organic chemical to distilled water. Isotherm adsorption tests of volatile organic chemicals were conducted using bottle-point technique and column test. Organic chemicals after passing through the column were extracted with hexane and analyzed with gas chromatography (Hewlett-Packard 5890) to check the adsorption capacity and breakthrough curve. The result were as follows: 1. The BET surface area of coconut activated carbon was 658~1,010 m$^2$/g where as coconut shell carbon was 6.6 m$^2$/g. Coconut activated carbon increased the BET surface area and adsorption capacity in bottle-point isotherm. 2. The adsorption capacity of coconut activated carbon for trichloroethylene (TCE) was reduced in the presence of humic substance. 3. A decrease in particle size of activated carbon resulted in higher adsorption capacity and lower intraparticle diffusion coefficient. It is reflected not only as a decrease in Freudlich adsorption capacity value (K) but also as an increase in Freudlich exponenent value (1/n).

  • PDF

Reuse of Rice-Hull and Application Technology Development in Waste Water Treatment (왕겨의 재활용 및 하수처리 활용기술 개발)

  • Shin, Ho-Sang;Ahn, Hye-Sil;Jung, Dong-Gyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • Activated Rice-Hull carbon was developed to remove ammonia compounds in water matrix. Isotherm adsorption tests of ammonia were conducted using a bottle-point technique and column test. Residual ammonia after Jar-Test or passing through the column was determined by Indophenol method, and assessed the removal efficiency for ammonia of the adsorbent. As a result, the adsorption capacity for ammonia of activated racehull carbon was very larger than that of coconut shell carbon, because the rice hull carbon had the higher BET surface area of silicate. The activated racehull carbon is under the development as adsorbent to remove ammonia in drinking water and waste water.

  • PDF

Photosynthetic Capacity and Water Use Efficiency under Different Temperature Regimes on Healthy and Declining Korean Fir in Mt. Halla (한라산 구상나무 건전개체와 쇠약개체의 온도변화에 따른 광합성능력과 수분이용효율)

  • Lim, Jong-Hwan;Woo, Su-Young;Kwon, Mi Jeong;Chun, Jung Hwa;Shin, Joon Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.705-710
    • /
    • 2006
  • We investigated seasonal photosynthetic capacity and water use efficiency changes of Korean fir (Abies koreana Wils.) trees located at three sites around the peak of Mt. Halla, Witseorum, Youngsil and Jindallebat. At each sites, we chose healthy and declining individuals to examine the differences of physiological characteristics between them. Net photosynthetic capacity in $15^{\circ}C$ were lower than those of $20^{\circ}C$ and $25^{\circ}C$. The difference of net photosynthetic capacity between healthy and damaged trees was clear in June and August but damaged trees recovered with passing of the time. There was no difference between healthy and damaged trees in September on photosynthetic rate. Generally, water use efficiency (WUE) of damaged trees was higher than healthy trees.

Assessment of Variable Characteristics in Water Quality of the Supply Systems in the Building (건축물내 급수설비의 수질변화 특성과 영향력 평가)

  • Lee, H.D.;Hwang, J.W.;Bae, C.H.;Kim, S.J.
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.313-320
    • /
    • 2004
  • In this study, variable characteristics of drinking water and the influences on underground water reservoirs, rooftop water tanks, and service water pipes in the building were assessed. The influence of underground water reservoir material and water capacity on water quality also were assessed. The results are the following as; First of all, the drinking water passing through underground water reservoirs or service water pipes in the building, averagely metal component concentration more increased from percent of 41.3 to percent of 74.2 totally than other items of water quality. On the other hand, both residual chlorine and total solid highly decreased 65.6 percent and 35.3 percent, respectively. Therefore, it was thought that water quality could be getting worse for microorganism re-growth by residual chlorine reduction, and total solid also could be a cause for extraneous matters accumulated in water reservoir. Secondly, the variations on water quality of each stage for water supply system in the building were higher in water service pipes connected from rooftop water tanks to the tap than in underground water reservoirs. In addition to, among of twelve items on water quality, ten items on water quality except dissolved oxygen and residual chlorine increased. Therefore, it was thought that the influence of water service pipes connected from rooftop water tanks to the tap on water quality were higher than other stages of water supply system in the building. Thirdly, in case of materials of underground water reservoir, it was likely that the variation on water quality by stainless steel and concrete materials got some similar. In case of water capacity, the variations on water quality of underground water reservoirs over $1,000m^3$ higher than those under $1,000m^3$. That reasons was likely that the retention time(49.72 hours averagely) of underground water reservoirs over $1,000m^3$ was two times longer than it of those under $1,000m^3$(23.37 hours). Therefore, it was thought that the influence on water quality by materials were some similar, but in case of water capacity, the influence of underground water reservoirs were higher.

A Study on the Estimation of Discharge Coefficients with Variations of Side Weir Angle (횡월류 위어 유입각 변화에 따른 유량계수 추정 기초 연구)

  • Wan-Seop Pi;Hyung-Joon Chang;Kye-Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • Recently, due to global warming and urbanization due to the influence of abnormal weather, weather changes are increasing worldwide. Various measures have been proposed to reduce flood damage as flood volume increases due to problems such as an increase in impermeable area due to urbanization and reckless development. In this study, flow characteristics and overflow volume were analyzed using FLOW-3D, a three-dimensional CFD model, in accordance with changes in the cross-flow weir inlet angle installed in the meandering river section, and a basic study was conducted to evaluate the overflow capacity and calculate the flow coefficient. As a result of the analysis, the smaller the inflow angle of the transverse overflow, the lower the water level and flow rate of the main water flow after passing the transverse overflow, and the higher the inflow angle, the higher the water level and the flow rate. In addition, it was confirmed that the direct downstream flow rate decreased compared to the upstream flow rate when the inflow angle of the transverse overflow was 40° or higher.

Removal of Natural Organic Matter (NOM) by Carbon Nanotubes Modified PVDF Membrane (탄소나노튜브(CNT)-PVDF 막을 이용한 자연용존유기물 제거)

  • Cho, Hyun-Hee;Cha, Min-Whan;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.148-156
    • /
    • 2012
  • In this research, the application of carbon nanotubes (CNTs) modified PVDF (polyvinylidene fluoride) membrane was tested as a simply and beginning attempt to overcome membrane fouling because CNTs importantly affect the transport of natural organic matter (NOM). Suwannee River fulvic acid (SRFA) as the representative of NOM was selected and its sorption results with single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and oxidized MWCNT (O-MWCNT) were obtained through the batch experiment. SRFA sorption isotherms had a strong nonlinearity and its sorption capacity followed the order O-MWCNT < MWCNT < SWCNT. The adsorbed mass of SRFA on each CNT decreased as a function of pH due to their charge repulsion. For the CNT-PVDF membrane filtration experiments, the suspended CNT solution (10 mg/40 mL) was incorporated into $0.45{\mu}m$-PVDF membrane and 5 mg/L of SRFA solution was monitored using UV detector connected with high pressure pump after passing through CNT-PVDF membrane. The SRFA removal efficiency by MWCNT-PVDF membrane was the strongest among other modified membranes. This suggests that the CNT modified microfiltration (MF) membrane might effectively and selectively apply to treat the contaminated water including organic compounds in the presence of NOM.

The Role of Decision-Makers' Platform for Securing Water by Moving Forward to Global Challenges (범지구적 물 문제 해결을 위한 정책입안자 네트워크의 역할)

  • Park, Ji-Seon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.21-21
    • /
    • 2011
  • Many Asian countries are suffered from various problems on water, which include the need for increased access to improves water supplies and sanitation through investments in infrastructure and capacity building, the balances water management system between development and ecosystem, and the need to reduce the human populations'vulnerability to water-related disasters, in particular, from climate variability and evolution. Decison makers are the most influential people in policy making and solving global water problems is central issue in eradicating poverty and achieving sustainable development (MDG). They across the world form an integral part of the architecture of national or regional governance. Their role covers a range of decision-making processes including passing legislation, scrutinizing government policy, and representing citizen through the election. We must ensure that these quiet but important issues get the political space, financial priority and public attention they deserve. Regional bodies such as the EU have also enacted legislation which introduces rules on water quality and other enforceable mattera across state boundaries. With this growing body of laws and policies on water issues, the role of decision makers is growing. Recognizing this role, decison makers' platform is essential to provide an opportunity to discuss crucial water issues in each country or region and for the purpose "2010 Parliaments for Water in Asia" has planned and organized to investigate our common issues and goals. During the meeting, we have an opportunity to observe water policy of Bangladesh, Bhutan, China, Mongolia, New Zealand and the Philippines and share the views on what needs to be done to move forward by decision makers for the future of water. In conclusion, the process of developing the decision makers' platform in each region would be ultimately essential point to increase the awareness of the developed and developing countries' roles, knowledge to clarify roles and responsibilities of each stake holders and finally be a major actor for resolving not only water challenges also issues of human settlements.

  • PDF

A Study on the Hydraulic Characteristics of Culvert Fishway with Offset Baffles and Fish Passage Effect (옵셋배플형 암거식 어도의 수리특성 및 어류이동효과에 관한 연구)

  • Park, Seong-Yong;Choi, Ji-Woong;Yoon, Byung-Man;Kim, Seo-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • The pale chub (Zacco platypus) is a dominant species that migrates locally and inhabits in rivers in Korea. The fish movement at confluences or hydraulic connections is very important especially for the life of small fish as pale chub. If main stream and off-channel habitats are connected with culverts, they would restrict the fish movement due to the high flow velocities and low depths. In foreign conturies, design flow conditions of fish friendly culvert, including flood flow capacity and fish-passage flow capacity, were assigned. Installation of culvert fishways is one way to improve the fish-passing capacity of culverts. On the contrary, in Korea, the design flow of culvert contains only the flood flow capacity. The effect of the fish passage with offset baffles was tested with the fixed velocity method in an experimental flume. As a result, An occasion velocity 1.2m/s, proportional success of pale chubs pass is maximum 20% improve than without baffle flume for energy dissipate. Offset baffle fishway(baffle height 5cm) provides that resting areas and/or a continuous channel of low velocity water in culverts. Especially, short baffle areas are domain where the pale chubs pass. And, FLOW-3D, a three dimentional numerical model, was used in order to evaluate detailed hydraulic characteristics and application possibility in a culvert fishway design.

Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier (초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향)

  • Chung, Doug-Young;Lee, Bong-Han;Jung, Jae-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • In this investigation, we observed surface morphology and porosity of a macroporous adsorbent made of Na-bentonite and Ca-bentonite as structure formation materials and grounded waste paper as macropore forming material for the development of a permeable reactive barrier to remove heavy metals in groundwater. Therefore, we selected minerals having higher cation exchange capacity among 2:1 clay minerals and other industrial minerals because sintering can significantly influence cation exchange capacity, resulting in drastic decrease in removal of heavy metals. The results showed that the increasing sintering temperature drastically decreased CEC by less than 10 % of the indigenous CEC carried by the selected minerals. One axial compressibility test results showed that the highest value was obtained from 5% newspaper waste pulp for both structure formation materials of Na-bentonite and Ca-bentonite although there were not much difference in bulk density among treatments. The pore formation influenced by sintering temperature and period contributes removal of heavy metals passing through the sintered macroporous media having different water retention capacity.