• Title/Summary/Keyword: Water-in-salt

Search Result 2,052, Processing Time 0.034 seconds

The influence of the radius of curvature on water desalination across the nanoporous penta-graphene

  • Ebrahimi, Sadollah
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • In the present study, the water desalination across the penta-graphene has been explored by using molecular dynamics simulation. The penta-graphene, a new carbon allotrope, introduced theoretically in 2015. It was shown that this carbon nanostructure is slightly stiffer against buckling in comparison with the graphene nanoribbons. The effect of radius of curvature (ROC) of the membrane, pore size, and applied pressure, on water flow rate, and salt rejection is investigated. It is shown that salt rejection, and the shape of the oxygen density distribution inside the pore can be influenced by the ROC of membrane. Finally, it is shown that the ROC, and pore size of 2D membranes, play an important role in the salt rejection.

A Study on Adhesion of Mechanical Properties of Rubber by Water-soluble salt (수용성염에 의한 고무의 접착특성 및 기계적 강도)

  • Kim, Seong-hye;Jeon, Jun-Ha;Um, Gi-Yong
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.55-59
    • /
    • 2018
  • In this study, to overcome a complicated shoe adhesion process such as buffing, pre-treatment by primer in the rubber component of the shoe, we studied adhesion mechanical properties with rubber compound added water-soluble salt for the purpose of improving the adhesion between midsole and outsole. Acid salts, basic salt and neutral salts were evaluated, rubber containing basic salts showed excellent adhesion to water-based adhesion. Since the basic salt is present as the hydroxy salt, the surface of rubber is hydrophilized. The results are confirmed by contact angle and IR spectroscopy measurement. In addition, in the case of rubber compound added basic salts, NBS abrasion resistance and hardness were increased by increasing crosslink density, but crosslink time was delayed.

Mineral extraction from by-products of brown rice using electrodialysis and production of mineral salt containing lower sodium (전기투석을 이용한 현미부산물로부터의 미네랄성분 추출 및 나트륨감량형 미네랄 소금 제조)

  • No, Nam-Doo;Park, Eun-Jung;Kim, Mi-Lim
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.859-866
    • /
    • 2015
  • The purpose of this study was to develop a supplemental healthy food that can help prevent high blood pressure-related diseases caused due to the excessive consumption of sodium in salt. This was achieved by using ion-displacement techniques to produce mineral salt with lower sodium content by using fermented brown rice by-products rich in minerals. Mineral salt containing 2019.2 mg/100 g of potassium, 678.5 mg/100 g of magnesium, 48.7 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by fermenting brown rice by-products to create a culture medium for the mineral salt. Mineral salt containing 1769.7 mg/100 g of potassium, 573.6 mg/100 g of magnesium, 35.3 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by filtering and refining the by-product extract of fermented brown rice. The results showed that when the stream velocity of the instrument used for electrolysis was 200 mL/min and the current and the concentration of the reactive liquid in the purified water chamber were higher, the effect of electrolysis was greater. Ion hot water extraction of the fermented brown rice by-products improved by up to 95% and was collected as purified water within 90 min of the reaction time. Chloride ions with pH 7.4 were produced by mixing sodium hydroxide in a purified saline water chamber with electro-analyzed water. The salt produced in this study contained low sodium, 5.7~30%, as compared to 40% sodium content of the normal salt.

Development of Food Waste Fermentation System by Low Water-Ratio Salt Minimization (절수 염분제거에 의한 음식물류 폐기물 퇴비화 시스템 개발)

  • Han, Doo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.189-194
    • /
    • 2005
  • The food wastes recycling system should be constructed before 2005 in the city area. In order to manufacture the good compost, salt remaining rate should be minimized. We studied the effective method of minimizing salt ratio by diluting with low water ratio. We got the salt remaining ratio less than 0.3% by effective fragmentation method, and we applied the IR heating in order to make good compost.

  • PDF

Quality Characteristics of Dombaegi(Salted Shark Meat) with Reference to Salt Concentration and Temperature during Dry Salting (염농도와 절임온도에 따른 돔배기의 품질특성)

  • Kim, Do-Hoon;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.656-660
    • /
    • 2009
  • We investigated the quality characteristics of Dombaegi after drying, with respect to salt concentration (1%, 2%, 3% all w/v) and salting temperature ($4^{\circ}C$, $18^{\circ}C$), to establish optimum salting conditions. Changes in moisture and salt content, water holding capacity, water activity, color, and textual properties of salted Dombaegi were measured. The moisture content was highest in Dombaegi prepared with 3% (w/v) salt at 4C. The salt content of Dombaegi rose as salt concentration and temperature increased. The water holding capacity was greatest after salting with 3% (w/v) salt at $4^{\circ}C$. Color and texture were superior after preparation at higher salt concentrations and lower salting temperatures. Thus, the quality of Dombaegi was optimal when dry salting was performed at the highest salt concentration (3%, w/v) and the lower salting temperature ($4^{\circ}C$).

Changes in the Free Amino Acid Content of the Shucked Oyster Crassostrea gigas Stored in Salt Water at 3℃

  • Tanimoto, Shota;Kawakami, Koji;Morimoto, Satoshi
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Shucked oysters were soaked in an equal weight of salt water and stored at $3^{\circ}C$ for 7 days. Changes in the free amino acid content of the whole body and in the adductor muscle were evaluated by a practical distribution method. With the exception of aspartic acid and tyrosine, no significant changes in free amino acids or ammonia were observed in whole-body shucked oysters during the storage period. In contrast, the majority of free amino acids in the adductor muscle decreased significantly. Most of these free amino acids were detected in considerable amounts in the surrounding salt water after 7 days of storage. Both the weight of the whole body and the salinity of the surrounding salt water decreased significantly during the storage period. These results suggest that free amino acids were eluted from the cutting surface of the adductor muscle and indicate that the free amino acid content per shucked oyster and in the adductor muscle, decreases during cold storage.

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

Hydraulic Property and Solute Breakthrough from Salt Accumulated Soils under Various Head Pressures

  • Lee, Sanghun;Chung, Doug-Young;Hwang, Seon-Woong;Lee, Kyeong-Bo;Yang, Chang-Hyu;Kim, Hong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.717-724
    • /
    • 2012
  • Salt accumulated soil should be reclaimed to lower salt level for crop production. This study was carried out to investigate the characteristics of water flow and transport of mono and divalent solutes on salt accumulated soils with different head pressures. Saturated hydraulic conductivity was measured by constant and falling head methods with maintaining different head pressures. Saturated hydraulic conductivity was influenced by bulk density and organic matter contents in soils, but it had different elusion patterns between saline and sodic soil. While the quantity of water necessary for reclamation could be varies with soil type, it was considered that the supply of one pore volume of water was affordable and economic. Additional head pressure significantly increased the volume of leachate at a given time and it was more effective at low organic matter soils. The results indicate that additional head pressure would be one of the best irrigation practices on desalination method for salt accumulated soils.

Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands (간척지 토양의 제염과정중 수리전도도의 변화)

  • 구자웅;은종호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

Salt-water Processing-dependent Change in Anti-oxidative and Anti-inflammatory Effects of Cortex Eucommiae (염수초 포제법에 따른 두충의 항산화 및 항염증 활성 변화 비교연구)

  • Koh, Wonil;Lee, Jinho;Ha, In-Hyuk;Chung, Hwa-Jin;Lee, In-Hee;Lee, Jae-Woong;Kim, Eun Jee;Gang, Byeong-Gu;Jeon, Se Hwan;Cho, Yongkyu;Kim, Min-Jeong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.29-38
    • /
    • 2017
  • Objectives The present study aimed to investigate the change in marker compounds, anti-oxidative and anti-inflammatory effects of salt-water processed Cortex Eucommiae. Methods To evaluate the influence of processing on anti-oxidant effect of Cortex Eucommiae, changes in total phenol, total flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging, and ferric reducing antioxidant power (FRAP) between processed and raw Cortex Eucommiae were assessed. In addition, nitrite assay was conducted to determine the influence of processing on anti-inflammatory effect of Cortex Eucommiae. Cell viability was also examined as to elucidate whether processing affects cytotoxicity of Cortex Eucommiae. Finally, high-performance liquid chromatography (HPLC) analysis was conducted to monitor changes in pinoresinol diglucoside amount of processed and raw Cortex Eucommiae. Results Salt-water processed Cortex Eucommiae showed higher total phenol and flavonoid amount, compared to raw Cortex Eucommiae. Furthermore, anti-oxidative activity of processed Cortex Eucommiae was improved as discovered in DPPH, ABTS, and FRAP assays. Anti-inflammatory effect of Cortex Eucommiae was also enhanced following salt-water processing, as evidenced in nitrite assay. HPLC analysis found that the amount of pinoresinol diglucoside, widely known as the marker compound of Cortex Eucommiae, increases through salt-water processing. All experiments were performed with non-toxic concentration of Cortex Eucommiae; processing did not affect the cytotoxicity of Cortex Eucommiae up to the currently adopted concentration. Conclusions The present results support that salt-water processing of Cortex Eucommiae is beneficial in terms of marker compound amount, anti-oxidative, and anti-inflammatory activities. Additional investigations are needed to standardize the processing method of Cortex Eucommiae.