Browse > Article
http://dx.doi.org/10.12989/mwt.2017.8.6.553

The influence of the radius of curvature on water desalination across the nanoporous penta-graphene  

Ebrahimi, Sadollah (Department of Physics, Faculty of Science, University of Kurdistan)
Publication Information
Membrane and Water Treatment / v.8, no.6, 2017 , pp. 553-562 More about this Journal
Abstract
In the present study, the water desalination across the penta-graphene has been explored by using molecular dynamics simulation. The penta-graphene, a new carbon allotrope, introduced theoretically in 2015. It was shown that this carbon nanostructure is slightly stiffer against buckling in comparison with the graphene nanoribbons. The effect of radius of curvature (ROC) of the membrane, pore size, and applied pressure, on water flow rate, and salt rejection is investigated. It is shown that salt rejection, and the shape of the oxygen density distribution inside the pore can be influenced by the ROC of membrane. Finally, it is shown that the ROC, and pore size of 2D membranes, play an important role in the salt rejection.
Keywords
water desalination; penta-graphene membrane; radius of curvature; molecular dynamics simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Suk, M.E. and Aluru, N.R. (2010), "Water transport through ultrathin graphene", J. Phys. Chem. Lett., 1, 1590-1594.   DOI
2 Tersoff, J. (1988), "Empirical interatomic potential for silicon with improved elastic properties", Phys. Rev. B, 38, 9902.   DOI
3 Wang, E.N. and Karnik, R. (2012), "Water desalination graphene cleans up water", Nat. Nanotechnol., 7, 552-554.   DOI
4 Xu, W., Zhang, G. and Li, B. (2015), "Thermal conductivity of penta-graphene from molecular dynamics study", J. Chem. Phys., 143, 154703.   DOI
5 Xue, M., Qiu, H. and Guo, W. (2013), "Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers", Nanotechnol., 24, 505720.   DOI
6 Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y. and Jena, P. (2015), "Penta-graphene: A new carbon allotrope", PNAS, 112, 2372-2377.   DOI
7 Zhu, C., Li, H. and Meng, S. (2014), "Transport behavior of water molecules through two-dimensional nanopores", J. Chem. Phys., 141, 18C528.   DOI
8 Zhu, C., Li, H., Zeng, X.C., Wang, E.G. and Meng, S. (2013), "Quantized water transport: Ideal desalination through Graphyne-4 membrane", Sci. Rep., 3, 3163.   DOI
9 Zhu, F., Tajkhorshid, E. and Schulten, K. (2002), "Pressure-induced water transport in membrane channels studied by molecular dynamics", Biophys. J., 83, 154-160.   DOI
10 Allen, M.P. and Tildesley, D.J. (1986), Computer Simulation of Liquids, Oxford University Press, New York.
11 Azamat, J., Khataee, A. and Joo, S.W. (2015), "Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure", Chem. Eng. Sci., 127, 285-292.   DOI
12 Azamat, J., Sattary, B.S., Khataee, A. and Joo, S.W. (2015), "Removal of a hazardous heavy metal from aqueous solution usingfunctionalized graphene and boron nitride nanosheets: Insights fromsimulations", J. Molec. Graph. Model., 61, 13-20.   DOI
13 Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P. (1987), "The missing term in effective pair potentials", J. Phys. Chem., 91, 6269-6271.   DOI
14 Cohen-Tanugi, D. and Grossman, J.C. (2014), "Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination", J. Chem. Phys., 141, 074704.   DOI
15 Chen, Q. and Yang, X. (2015), "Pyridinic nitrogen doped nanoporous graphene as desalination membrane: Molecular simulation study", J. Membr. Sci., 496, 108-117.   DOI
16 Chien, S.K., Yang, Y.T. and Chen, C.K. (2011), "Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations", Appl. Phys. Lett., 98, 033107.   DOI
17 Cohen-Tanugi, D. and Grossman, J.C. (2012), "Water desalination across nanoporous graphene", Nano Lett., 12, 3602-3608.   DOI
18 Dickey, J.M. and Paskin, A. (1969), "Computer simulation of the lattice dynamics of solids", Phys. Rev., 188, 1407-1418.   DOI
19 Cohen-Tanugi, D., Lin, L.C. and Grossman, J.C. (2016), "Multilayer nanoporous graphene membranes for water desalination", Nano Lett., 16, 1027-1033.   DOI
20 Corry, B. (2008), "Designing carbon nanotube membranes for efficient water deasalination", J. Phys. Chem. B, 112, 1427-1434.   DOI
21 Ebrahimi, S. (2015), "Influence of Stone-Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain", Solid State Commun., 220, 17-20.   DOI
22 Ebrahimi, S. (2016), "Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation", Molecul. Simul., 42, 1485-1489.   DOI
23 Ebrahimi, S. (2016), "Influence of curvature on water desalination through the graphene membrane with Sipassivated nanopore", Comput. Mater. Sci., 124, 160-165.   DOI
24 Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.H., Crommie, M.F., Cohen, M.L., Louie, S.G. and Zettl, A. (2009), "Graphene at the edge: Stability and dynamics", Sci., 323, 1705-1708.   DOI
25 Einollahzadeh, H., Dariani, R.S. and Fazeli, S.M. (2016), "Computing the band structure and energy gap of penta-graphene by using DFT and $G_0W_0$ approximations", Solid State Commun., 229, 1-4.   DOI
26 Elimelech, M. and Phillip, W.A. (2011), "The future of seawater desalination: energy, technology, and the environment", Sci., 333, 712-717.   DOI
27 Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D. and Golovchenko, J.A. (2010), "Graphene as a subnanometre trans-electrode membrane", Nature, 467, 190-193.   DOI
28 Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Molec. Graph., 14, 33-38.   DOI
29 Goh, P.S. and Ismail, A.F. (2015), "Graphene-based nanomaterial: the state-of-the-artmaterial for cutting edge desalination technology", Desalinat., 356, 115-128.   DOI
30 Hoover, W.G. (1985), "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A, 31 1695-1697.   DOI
31 Konatham, D., Yu, J., Ho, T.A. and Striolo, A. (2013), "Simulation insights for graphene-based water desalination membranes", Langmuir, 29, 11884-11897.   DOI
32 Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Sci., 321, 385-388.   DOI
33 Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. and Geim, A.K. (2012), "Unimpeded permeation of water through helium-leak-tight graphene-based membranes ", Sci., 335, 442-444.   DOI
34 Lee, S.H. and Rasaiah, J.C. (1996), "Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at $25^{\circ}C$", J. Phys. Chem., 100, 1420-1425.   DOI
35 Li, X., Zhang, S., Wang, F.Q., Guo, Y., Liu, J. and Wang, Q. (2016), "Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination", Phys. Chem. Chem. Phys., 18(21), 14191-14197.   DOI
36 Miyamoto, S. and Kollman, P.A. (1992), "Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models", J. Comput. Chem., 13, 952-962.   DOI
37 Nicolai, A., Sumpter, B.G. and Meunier, V. (2014), "Tunable water desalination across graphene oxide framework membranes", Phys. Chem. Chem. Phys., 16, 8646-8654.   DOI
38 Pontiea, M., Derauwa, J.S., Plantiera, S., Edouarda, L. and Baillya, L. (2013), "Seawater desalination: nanofiltration-a substitute for reverse osmosis?", Desalinat. Water Treat., 51, 485-494.   DOI
39 O'Hern, S.C., Boutilier, M.S.H., Idrobo, J.C., Song, Y., Kong, J., Laoui, T., Atieh, M. and Karnik, R. (2014), "Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes", Nano Lett., 14, 1234-1241.   DOI
40 Pilmpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19.   DOI
41 Severin, N., Lange, P., Sokolov, I.M. and Rabe, J.P. (2012), "Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore", Nano Lett., 12, 774-779.   DOI
42 Sint, K., Wang, B. and Kral, P. (2008), "Selective ion passage through functionalized graphene nanopores ", J. Am. Chem. Soc., 130, 16448-16449.   DOI