• Title/Summary/Keyword: Water-fat Separation

Search Result 19, Processing Time 0.024 seconds

Field Map Estimation for Effective Fat Quantification at High Field MRI (고자장 자기공명영상에서 효율적인 지방 정량화를 위한 필드 맵 측정 기술)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.558-574
    • /
    • 2014
  • The number of fatty liver patients is sharply growing due to the rapid increase in the incidence of metabolic syndrome, which can lead to diseases such as abdominal obesity, hypertension, diabetes, and hyperlipidemia. Early diagnosis requires examinations using magnetic resonance imaging (MRI), wherein quantitative analyses are implemented through a professional water-fat separation method in many cases, as the intensity values of the areas of interest and non-interest are considerably similar or the same. However, such separation method generates inaccurate results in high magnetic fields, where the inhomogeneity of the fields increases. To overcome the limits of such conventional fat quantification methods, this paper proposes a field map estimation method that is effective in high magnetic fields. This method generates field maps through echo images that are obtained using the existing IDEAL sequences, and considers the wrapping degree of the field maps. Then clustering is performed to separate calibration areas, the least square fits based on the region growing method schema of the separated calibration areas, and the histograms are adjusted to separate the water from the fats. In experiment results, our proposed method had a superior fat detection rate of an average of 86.4%, compared to the ideal method with an average of 61.5% and Yu's method with an average of 62.6%. In addition, it was confirmed that the proposed method had a more accurate water detection rate of 98.4% on the average than the 88.6% average of the fat saturation method.

Thermodynamic Incompatibility of Food Macromolecules (식품 거대분자의 열역학적 비혼합성)

  • 황재관;최문정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.1019-1025
    • /
    • 1998
  • Proteins and polysaccharides are major food macromolecules. Generally, the mixture of these macromolecules can be separated into two phases because of their thermodynamic incompatibility. Phase separ-ation is explained by equilibrium phase diagram, which comprises binodal curve, critical point, phase separation threshold, tie-line and rectilinear diameter. Phase separation of protein-polysacc-haride solution is affected by pH, temperature, ionic strength, molecular weight, molecular structure, etc. Membraneless osmosis has been developed to concentrate protein solutions, using the phase diagram constituted by proteins and polysaccharides. Protein-polysaccharide mixtures are very promising fat mimetics because solution of mixtures forms water-continuous system with two phase-separated gels, which give plastic texture and a fatty mouthfeel.

  • PDF

Water-Fat Imaging with Automatic Field Inhomogeneity Correction Using Joint Phase Magnitude Density Function at Low Field MRI (저자장 자기공명영상에서 위상-크기 결합 밀도 함수를 이용한 자동 불균일 자장 보정 물-지방 영상 기법)

  • Kim, Pan-Ki;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Purpose : A new inhomogeneity correction method based on two-point Dixon sequence is proposed to obtain water and fat images at 0.35T, low field magnetic resonance imaging (MRI) system. Materials and Methods : Joint phase-magnitude density function (JPMF) is obtained from the in-phase and out-of-phase images by the two-point Dixon method. The range of the water signal is adjusted from the JPMF, and 3D inhomogeneity map is obtained from the phase of corresponding water volume. The 3D inhomogeneity map is used to correct the inhomogeneity field iteratively. Results : The proposed water-fat imaging method was successfully applied to various organs. The proposed 3D inhomogeneity correction algorithm provides good performances in overall multi-slice images. Conclusion : The proposed water-fat separation method using JPMF is robust to field inhomogeneity. Three dimensional inhomogeneity map and the iterative inhomogeneity correction algorithm improve water and fat imaging substantially.

Effects of Beef Fat Replacement with Gelled Emulsion Prepared with Olive Oil on Quality Parameters of Chicken Patties

  • Meltem, Serdaroglu;Berker, Nacak;Merve, Karabiylkoglu
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.376-384
    • /
    • 2017
  • The objective of this study was to investigate the effect of using gelled emulsion (olive oil 46%, inulin 9%, gelatin 3%) as fat replacer on some quality parameters of chicken patties. For this purpose GE, prepared with olive oil, gelatin and inulin was replaced with beef fat at a level of 0%, 25%, 50%, 100% (C, G25, G50, G100). In this study syneresis, thermal stability, centrifuge and creaming stability of gelled emulsion were analyzed. Chemical composition, technological paramerers (cooking yield, water holding capacity, diameter reduction, fat and moisture retention) and textural and sensory properites were evaluated in comparision to control patties. High thermal stability was recorded in GE (93%), also creaming stability results showed that GE protected its stability without any turbidity and separation of the layer. The complete replacement of beef fat with GE showed detrimental effect on all investigated cooking characteristics except fat retention. Replacement of beef fat with GE at a level of 50% resulted similar cooking characteristics with C samples. Color parameters of samples were affected by GE addition, higher CIE $b^*$ values observed with respect to GE concentration. The presence of GE significantly affected textural behaviors of samples (p<0.05). Our results showed that GE prepared with inulin and olive oil is a viable fat replacer for the manufacture of chicken patty.

CHEMICAL SHIFT IMAGING

  • Yi, Yun;Kim, Min-Gi
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.22-25
    • /
    • 1992
  • Lipid component and water component image in living organism can be acquired due to its chemical shift difference. Various techniques for chemical shift imaging were used for acquiring separated image. It is necessary two imaging experiments to acquire two separated images wi th Dixon's method. This technique is less susceptible to local magnetic inhomogeneities and easily applied to multi-slice imaging. With CHESS and SECSI method, which based on chemical selectivity of R.F pusle, either water or lipid image can be acquired by one imaging experiment. However, those are more susceptible to local magnetic field inhomogeneities and difficult to apply to multi-slice imaging. The SECSI method showed best signal suppression ratio of fat and water, which is measure of separation of water and fat.

  • PDF

Pumpkin Seed Oil as a Partial Animal Fat Replacer in Bologna-type Sausages

  • Uzlasir, Turkan;Aktas, Nesimi;Gercekaslan, Kamil Emre
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.551-562
    • /
    • 2020
  • Beef fat was replaced with cold press pumpkin seed oil (PSO; 0%, 5%, 15%, and 20%) in the production of bologna-type sausages. A value of pH, water-holding capacity (WHC), jelly-fat separation, emulsion stability and viscosity values were determined in meat batters. Thiobarbituric acid reactive substances (TBARS), color, and textural characteristics (TPA, shear test, penetration test) were determined in end-product at 1, 7, 14, 21, and 28 days of storage at 4℃. The pH values were varied between 6.06 and 6.08. With the increase in the level of PSO in meat batters, there was a significant increase in WHC, jelly-fat separation and viscosity values (p<0.05) while a significant decrease in emulsion stability (p<0.05). TBARS values of sausages were found to be significantly higher than in the control group (p<0.05), and this trend continued during storage. Increasing of PSO level were caused a significant increase in L* and b* values while a decrease in a* value (p<0.05). Hardness, adhesiveness and chewiness values were significantly reduced whereas cohesiveness and resilience values increased (p<0.05). Maximum shear force and work of shear was significantly decreased as the level of PSO increased (p<0.05). Hardness, work of penetration and the resistance during the withdrawal of the probe values (penetration tests) increased significantly with the increase in the level of PSO (p<0.05). These results indicate that PSO has potential to be use as a replacement of animal-based fats in the production of bologna-type sausages.

Effects of High Molecular Weight Water-Soluble Chitosan can in 7tro Fertilization and Ovulation in Mice Fed a High-Fat Diet

  • Choo, Young-Kug;Choi, Hee-Gon;Kim, Jin-Kyung;Kwak, Dong-Hoon;Cho, Jung-Ran;Kim, Ji-Yeoun;Kim, Byung-Jin;Jung, Kyu-Yong;Choi, Bong-Kyu;Shin, Min-Kyo
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • A high molecular ar weight water-soluble chitosan (WSC) with an average molecular weight of 300 kD and a deacethylation level of over 90% was produced using a simple multi-step-membrane separation process. It is known that WSC prevents obesity induced by a high-fat diet. Consequently, this study investigated whether or not WSC improved the ovarian dysfunction caused by obesity in mice. The mice were fed a high density protein and lipid diet for weeks, followed by the administration of WSC at 480 mg/kg body weight per day for 4 days. Thereafter, the changes in body weight, ovulation rate, in vivo and in vitro fertilization and emboryonic development were measured . WSC markedly reduced the body weight of obese mice fed with a high-fat diet, but not in mice fed with a normal diet. WSC had siginificant effects on the ovulation rate, both the in vivo and in vitro fertilization rates and embryonic development. These results indicate an improvement in the ovarian and oviduct dysfunction caused by obesity, and suggest an adjustment in the internal secretions and metabolic functions.

Textural and Organoleptic Properties of Tofu Manufactured with Micronized Full-fat Soyflour Fortified with Food Ingredients

  • Shim, Jae-Jin;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.278-283
    • /
    • 2003
  • Textural properties of tofu manufactured with micronized full-fat soyflour (MFS) were enhanced by the addition of soy protein isolate, whey protein concentrate, chitosan oligosaccharide and mushroom powder. The MFS solution (14.2% solid content) was converted to semi-solid tofu by a two-stage heat treatment with the addition of 4% coagulant mix. The MFS tofu was evaluated by a compression test as well as sensory evaluation. To produce the semi-solid gel (MFS tofu) with reasonably high strength and toughness, the MFS solution with 14.2% solid content and 7.0% protein had to be heat treated at 121$^{\circ}C$ for 3min. The relative toughness of MFS tofu was increased by the addition of SPI, showing a 144% increase. The toughness of MFS tofu prepared with the MFS/SPI mixture was greatly increased by the addition of WPC at the level of 0.7% and the water separation from MFS tofu was greatly reduced. Furthermore, the toughness and strength of MFS/SPI tofu was enhanced by the addition of 0.1% chitosan oligosaccharide and 0.2% mushroom powder. The sensory evaluation of the tofu fortified with SPI, chitosan oligosaccharide and mushroom powder was superior to that of MFS tofu, with a higher score for overall preference.

Physicochemical Factors Affecting Cooking and Eating Qualities of Rice and the Ultrastructural Changes of Rice during Cooking (쌀의 취반 및 식미특성에 영향을 주는 요인들과 취반 시 쌀의 배유 조직의 변화)

  • 이영은;오스만엘리자베쓰엠
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.637-645
    • /
    • 1991
  • Physicochemical factors affecting cooking and eating quality of rice and their mechanisms were investigated. The stickiness of cooked rice was negatively correlated with amylose content(r=0.58, p<0.05) and protein content(r=-0.72, p<0.01), but not affected by crude fat content of rice. The ultrastructure of cooked rice grain showed the progressive gelatinization of starch from the periphery toward the center of the endosperm as water and heat energy diffused into. The rate of water diffusion appears to be dependent on the cell arrangement in the endosperm and the protein content of milled rice. Once water and heat reach the starch granules, the rate of in situ gelatinization of starches appears to be dependent on their own gelatinization temperature range and amylose content. Protein acts as a barrier for the swelling of starch and water diffusion in two ways : 1) by encasing starch granules in the starchy endosperm, and 2) by forming a barrier between the subaleurone layer and the starchy endosperm. Therefore, the separation and fragmentation of the outermost layers of the endosperm occurred more easily in the low-protein content rices, and was associated with increases of solids lost in cooking-water at 95$^{\circ}C$ and stickiness of cooked rice.

  • PDF

Emulsifying Properties of Concentrated Red Ginseng Extract: Influence of Concentration, pH, NaCl (홍삼농축액 함유 유화액의 유화특성에 관한연구)

  • You, Kawn-Mo;Jang, Hyeon-Ho;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.504-514
    • /
    • 2017
  • This study was carried out to investigate the emulsifying properties of concentrated red ginseng extract (CRGE). First, we determined the interfacial tension of CRGE at the oil-water interface. Second, oil-in-water emulsions were prepared with CRGE and then their physicochemical properties such as fat globule size, zeta-potential, dispersion stability, and microscopic characteristics were determined. It was found that interfacial tension gradually decreased with increasing CRGE concentration, indicative of some surface activity. In emulsions, fat globule size was decreased as CRGE concentration increased, showing a critical value ($d_{43}$$0.39{\mu}m$) at ${\geq}3.5wt%$ of CRGE. In addition, pH and NaCl also influenced on fat globule sizes; they were increased in acidic conditions ($pH{\leq}3$) or in higher NaCl concentration (${\geq}0.4M$) and these results were interpreted in view of the change in zeta potentials. The dispersion stability by separation analyzer ($LUMiFuge^{(R)}$) showed that it was more stable in emulsions with higher CRGE concentration (i.e., ${\geq}3.5wt%$). In conclusion, CRGE was surface-active and it could be used as an emulsifier in preparation of food emulsions.