• Title/Summary/Keyword: Water-driven ejector

Search Result 11, Processing Time 0.024 seconds

A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (II): Comparison of Bubble Behavior with and without Ejector (공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (II): 기포거동 특성의 비교 분석)

  • Seo, Hyunduk;Aliyu, Aliyu Musa;Kim, Hyogeum;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • To verify floatability of ABB (Air bubble barrier), we compared bubble swarm behavior with and without the air-driven ejector. Experiment was conducted using the fabricated air-driven ejector with 5 mm nozzle on the bottom of 1 m3 water tank. Reynolds number of air in the nozzle was ranged 1766-13248. We analyzed data with statistical method using image processing, particle mage velocimetry (PIV) and proper orthogonal decomposition (POD) analysis. As a result of POD analysis, there was no significant eigenmode in bubbly flow generated from the ejector. It means that more complex turbulent flows were formed by the ejector, thereby (1) making bubbles finer, (2) promoting three-dimensional energy transfer between bubble and water, and (3) making evenly distributed velocity profile of water. It is concluded that the air-driven ejector could enhance the performance of ABB.

Study on Cooling Charcteristics of Forced Evaporation by using Steam Ejector (스팀 에젝터에 의한 강제 증발 방식의 냉각 특성에 관한 연구)

  • Son, H.J.;Lee, Y.H.;Kim, Y.G.;Jeong, H.M
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.41-46
    • /
    • 2006
  • This study shows a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water by about $5^{\circ}C\;from\;25^{\circ}C$ or higher. In this research, to replace the present water cooling system, we focused on a water cooling system by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are depended on the vacuum pressure in the enclosed tank, and the cooling water is generated by latent head of evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8$ mmHg using a steam driven ejector with jet condenser.

  • PDF

An Experimental Study on the Water Evaporation Conditions of the Enclosed Tank (밀폐용기내의 물의 저압 증발 최적조건에 관한 실험적 연구)

  • Kim, S.H.;Shin, Y.S.;Lee, Y.W.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • Cooling towers are widely used not only for cooling products and equipment in manufacturing process but HVAC(Heating, Ventilation and Air Conditioning) system. As a cooling tower is the terminal apparatus which discharges heat from industrial process, the efficiency of heat exchange in the cooling tower greatly affects to the overall performance of a thermal system. In this paper, we constituted a new water cooling system by using a Latent heat of evaporation in an enclosed tank, and this system is consisted of an enclosed vacuum tank and water driven ejector system. Several experimental cases were carried out for improvement methods of high vacuum pressure and water cooling characteristics. The ejector performance was tested in case of water temperature variations that flows into the ejector. Based on the vacuum pressure by water driven ejector, the water cooling characteristics were investigated for the vaporized air condensing effects.

  • PDF

A Study on the Precool Characteristics of Agricultural Products Using the Water-driven Ejector (수구동 액체이젝터를 이용한 농산물의 예냉특성에 관한 연구)

  • 박영승;이정혜;김호영;김경근
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.45-49
    • /
    • 2001
  • To maintain the freshness of produce, because of stand away between produced and consumer, we need refrigeration system that can supply to consumer at cold chain as soon as gathering. General refrigeration system consist of refrigeration chamber or low temperature store. But the vacuum technology can rapidly refrigeration without refrigerator. This precool system possible to get low precooled temperature, suitable for the fishes, the meat, the vegetables, the fruit etc. Especially get advantage that quality maintain through rapid refrigeration of ferment directly generate heat. Vacuum precool system's principle is that water saturated temperature reduce according to pressure is get to vacuum area, so product temperature reduce as water evaporation at product. In vacuum suction, unit, on early experiment period run the rotary type vacuum pump at purpose pressure, then maintain pressure by water-diven ejector. As the results, cabbage took about 60 minutes to reach from $23.2^{\circ}C$ to $4.5^{\circ}C$at 5mgHg abs.

  • PDF

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Numerical Analysis on the Flow Characteristics in Steam Ejector

  • Shin, You-Sik;Jin, Zhen-Hua;Chun, You-Sin;Lee, Sang-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.749-754
    • /
    • 2006
  • This study performed of a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water in aquafarm by about $5^{\circ}C$ from $25^{\circ}C$ or higher in this research, to replace the present water cooling system, Ive focused on a water cooling system operated by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are dependent on the vacuum pressure in the enclosed tank, and the cooling water is generated by evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8mmHg$ using a steam driven ejector with jet condenser in experiments. The obtained results are respectively ${\Delta}T=7^{\circ}C$, ${\Delta}T=5^{\circ}C$ and ${\Delta}T=5.5^{\circ}C$ at heat exchanger flow rate 4L/M. The obtained results are respectively ${\Delta}T=5.5^{\circ}C$, ${\Delta}T=5.5^{\circ}C$ and ${\Delta}T=5.5^{\circ}C$ at heat exchanger flow rate 4.5L/M.

  • PDF

A Study on the Performance of Steam Ejector by Variation of Steam Pressure (증기압력 변화에 따른 증기 이젝터의 성능에 관한 연구)

  • Jun You-Sin;Shin You-Sik;Jin Zhen Hua;Jeong Hyo-Min;Chung Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.761-766
    • /
    • 2006
  • This paper describes a study on the performance of steam ejector by variation of steam pressure. Water temperature is especially important for good qualify of fish in an inland aquafam. In summer season, the water temperature increases above $25^{\circ}C$, but for good quality breeding or fish is the maintenance of optimum aquafam temperature by about $20^{\circ}C$. Therefore it is needed to drop the water temperature to provide suitable conditions of fish growth. There are many kinds of cooling system, in this study using steam ejector. After cooling the water in vacuum tank with the steam ejector then circulate this water to inland aquafam. In this way to minimizes fish stress that it is caused by water temperature. The objective of research confirms the difference of the case which there is no water in the vacuum tank and has water in the vacuum tank. The purpose of this paper is to examine the effects on the performance of steam ejector by variation of steam pressure.

  • PDF

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

Experimental Study of the Development of New Type Water Ejector (신형 수이젝터 개발을 위한 실험연구)

  • Choi, Hyun-Kue;Moon, Soo-Bum;Choe, Soon-Youl;Choi, Soon-Ho;Kim, Kyung-Kun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.35-36
    • /
    • 2005
  • An ejector driven by a liquid is a fluid transfer equipment to be used under a poor suction condition, which means that there exists a possibility to occur a cavitation. It is a highly reliable device because it has no movable part in it, that is only a passive equipment. The ejector is an inevitably necessary one to overcome a poor pumping condition and to mix uniformly two fluids, however it has a low efficiency since it requires a pump for its operation. This study is for the development of a new-type liquid ejector with the application of a nozzle shape alteration, which maximize the suction performance of it. which provides the increased competition with the domestic industries. Also, the increased performance opens a new manufacturing method to use a commercial pipes for the production of an ejector, which is based on a trivial loss of a performance. However, this minor loss can be sufficiently compensated by the increased performance of a new-type ejector. Therefore, the developed ejector by this study can considerably reduce the manufacturing time and cost while its performance is largely increased.

  • PDF

STUDY ON THE PERFORMANCE OF THE SHAPE OF THE AIR-LIQUID EJECTOR DIFFUSER (기체-액체 이젝터의 디퓨저 형상에 대한 연구)

  • Jang, Jin-Woo;Sin, Won-Hyeop;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6412-6418
    • /
    • 2014
  • This paper performed a numerical study of an air-liquid ejector. An ejector is a fluid-transportation device that spouts high-pressure fluid from driving pipes using the kinetic energy of the spouted fluid and increases the pressure through the exchange of momentum with the surrounding gases of the lower pressure. The air-liquid ejector was investigated through steady three-dimensional multiphase CFD analysis using commercial software ANSYS-CFX 14.0. Water as the primary fluid is driven through the driving nozzle and air is ejected as the second gas instead of ozone in real applications. The difference in performance according to the shape of the diffuser of the ejector was examined. The results provide deep insight into the influence of various factors on the performance of the air-liquid ejector. The proposed numerical model will be very helpful for further design optimization of the air-liquid ejectors.