• Title/Summary/Keyword: Water-blocking

Search Result 267, Processing Time 0.026 seconds

Study on Ophthalmic Materials Possessing UV-Blocking/Antimicrobial Functions (자외선 차단 기능을 가진 항균성 안 의료용 소재에 관한 연구)

  • Ye, Ki-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.460-464
    • /
    • 2010
  • We manufactured functional contact lens materials using 2-hydroxy-4-methoxy-benzophenone, titanium(VI) isopropoxide and nanogold, nanoplatinum with UV-blocking and antimicrobial effects. Contact lens was manufactured by cast mould method. The resulting mixture was copolymerized by heating at $70^{\circ}C$ for about 40 min, at $80^{\circ}C$ for about 40 min, and finally at $100^{\circ}C$ for about 40 min. The refractive index of 1.434 ~ 1.436, water content of 35.24 ~ 36.32%, and visible transmittance of 88.3 ~ 90.8% were obtained for the contact lens materials. The polymer materials satisfied the physical properties required to make the material suitable to be applied as a functional material for ophthalmological purposes.

Effects of Sodium Fluoride on the Water Transport in Leaves of Barley and Rice under Salt Stress in the Light

  • Hwang, Hong-Jin;Oh, Kwang-Hoon;Park, Phun-Bum;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.25-28
    • /
    • 2004
  • The kinetics of the loss of leaf fresh weight during incubation of barley and rice leaves in 9% or 15% NaCl solutions were biphasic, indicating the existence of a controlling mechanism for water transport. The first rapid phases reached their plateaus within 1 and 2 h in the case of rice and barley leaves, respectively. When barley leaves were fed with sodium fluoride, an inhibitor of phosphatase inhibitor, through their epicotyls for 3 h in darkness, prior to the treatment of NaCl, the biphasic pattern shown during NaCl treatment was disappeared resulting in linear decreases in the relative fresh weights. The results suggest that NaF accelerates salt-induced water efflux from plant cells, possibly by inhibiting the protection mechanism that may act in NaF-untreated leaves. The linear water loss can be explained in terms of phosphorylation of aquaporin by blocking its dephosphorylation in the presence of the phosphatase inhibitor to keep aquaporin in a phosphorylated form. However, the effect of NaF shown in barley leaves were not observed in rice. These results suggest that the regulation of water transport depends on plant species, and the mechanism for the controlling water transport in rice is different from that of barley.

  • PDF

Determination of operating factor and characteristics of membrane fouling on hybrid coagulation pretreatment-UF system in drinking water treatment (정수처리 응집·한외여과 시스템의 연속운전을 통한 운전조건 결정 및 막오염 특성에 관한 연구)

  • Moon, Seong-Yong;Yun, Jong-Sub;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.267-274
    • /
    • 2008
  • This study is about efficiency of pretreatment process and operating factor to membrane process at continuous coagulation/ultrafiltration process in water treatment. The capacity of pilot plant was $0.06{\beta}(C)/d$. The raw water used was from Nakdong stream which was characteristized by high organic matter and high turbidity. The result of the test was that coagulation is good process as to high removal rate to organic matter and turbidity but It caused problem to membrane pore blocking. This paper is to determine the membrane fouling potential under different membrane flux, backwash pressure and linear velocity. Backwash pressure and flux is important parameter on operation of membrane system. Those are directly affected on membrane system. When backwash pressure increased from 150 kPa to 200 kPa, the result showed that fouling (pressure increase rate) changed from 3.69 kPa/h to 0.93 kPa/h and the recovery rate changed from 90.7 % to 82.0 %. Linear velocity had slightly effect on fouling. Linear velocity increased from 0.2 m/s to 0.5 m/s, the corresponding pressure rate changed from 0.93 kPa/d to 0.77 kPa/d.

Wave Control by Tide-Adapting Submerged Breakwater (조위차 극복형 잠제의 파랑제어)

  • Lee, Woo-Dong;Jeong, Yeon-Myeong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.573-580
    • /
    • 2019
  • A submerged breakwater is a coastal structure built under water with excellent landscape. The depth of the crest of the breakwater should be maintained at more than a certain level in order for the submerged breakwater to control waves properly. This means that the effect of blocking waves deceases sharply at high tide in coastal areas with large tidal differences. In this study, we proposed a Tide-Adapting Submerged Breakwater (TA-SB) to overcome this problem, and then we conducted hydraulic model experiments to evaluate the performance of the TA-SB for controlling waves. The experimental results showed that the tapered wings attached to the crest of the TA-SB helped induce forced breaking waves. In particular, they were very effective in blocking waves and attenuating wave energy at high tide. In addition, the wave control performance of the proposed TA-SB was far superior to the Tide-Adapting Low-Crested Structure (TA-LCS) of the previous study.

Multifunctional Indium Tin Oxide Thin Films

  • Jang, Jin-Nyeong;Jang, Yun-Seong;Yun, Jang-Won;Lee, Seung-Jun;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.162-162
    • /
    • 2016
  • We present multifunctional indium tin oxide (ITO) thin films formed at room temperature by a normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions (NOIs). The ITO thin film possesses not only low resistivity but also high gas diffusion barrier properties even though it is deposited on a plastic substrate at room temperature without post annealing. Argon neutrals incident to substrates in the sputtering have an optimal energy window from 20 to 30 eV under the condition of blocking energetic NOIs to form ITO nano-crystalline structure. The effect of blocking energetic NOIs and argon neutrals with optimal energy make the resistivity decrease to $3.61{\times}10-4{\Omega}cm$ and the water vapor transmission rate (WVTR) of 100 nm thick ITO film drop to $3.9{\times}10-3g/(m2day)$ under environmental conditions of 90% relative humidity and 50oC, which corresponds to a value of ~ 10-5 g/(m2day) at room temperature and air conditions. The multifunctional ITO thin films with low resistivity and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF

A study on application of inflatable structure system for rapid blocking of sudden water in submerged floating tunnels (해중터널 내 돌발용수 급속차폐를 위한 팽창시스템 적용에 관한 연구)

  • Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.469-484
    • /
    • 2020
  • This study focused on shielding through inflatable structure in the event of sudden water inflow into the submerged floating tunnels. Currently, there is a lack of measures to deal with unexpected water in tunnels in Korea. Although water treatment facilities such as waterproofing and floodgates in tunnels are installed, there are limitations to the sudden inflow of large amounts of seawater or underground water. Also, floodgates cannot respond quickly to sudden damage due to slow blocking time. Accordingly, a study was conducted on the shielding rate and axial movement distance for inflatable structure. The results of the reduced model experiment confirmed that the number of inflatable structure and internal pneumatic pressure influence on the shielding rate. As the number of inflatable structure increased from one to two, the shielding rate increased by about 35 up to 40 percent. It was also confirmed that the shielding rate increased by about 4 percent as the internal pneumatic pressure increased from 0.2 bar to 0.3 bar. If we verify and further develop the results identified in this study through a real-size experiment, it will be able to be used as an effective waterproof measure for sudden water inflow into the undersea tunnels or underwater tunnels.

A study on the Development and Evaluation of Sludge Occlusion Reduced Diffuser (폐색 저감형 산기관의 개발 및 적용성 평가)

  • Kim, Young-Hoon;Kim, Kwan-Yeop;Lee, Eui-Jong;Nam, Jong-Woo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • The diffuser which is conventionally adapted to MBR, has problem that decreasing the cleaning effect of membrane module by inflexible air supply due to the occlusion of sludge from diffuser hole. To solve this problem, diffuser structure of submerged module should be improved to discharge sludge which is flow into the diffuser for prevent occlusion in the diffuser. In this study, the structure of the diffuser was reformed to open lower part for preclusion the blocking. And the outlet diameter of the diffuser was drawn through the condition for the depth of water and air rate, to prevent air-leak condition of improved diffuser. Moreover, application is evaluated by comparing test with occlusion effect of the conventional and improved diffuser. From the results, air-water boundary changes are steady with changes of water depth and it shows linear relation about air rate. By using this linear numerical formula, the height of diffuser's outlet can be decided. Also, it displays that it can prevent the occlusion effect during the comparing test. Hereafter, if this diffuser is applied to practical MBR process, the occlusion problem of diffuser will be disappeared.

Urban Waterway System and Construction Method for Runoff Reduction (유출저감을 위한 도시형 수로 시스템 및 시공방법)

  • Oh, Yungtak;Han, Seungwan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.25-33
    • /
    • 2021
  • This technology is to let rainwater flow into a waterway that is located side gutter of a street with blocking garbage including cigarette butts at the same time. The first waterway is located beside the sidewalk and it enhances the water circulation in a city. This waterway is filled with aggregates and filter media, which removes fine dust that is washed out of the street and let water flow down to the earth. The second waterway is located beside the street and it retains rainwater temporarily with decreasing its flow speed. The second waterway shall reduce flooding damages by avoiding bottleneck situation in the street inlets and storm water pipelines which is the main causation of flooding in a city.

Optophysical Properties of Hydrogel Ophthalmic Lenses Containing Gallate Group (Gallate group이 포함된 친수성 안의료용 렌즈의 광물리적 특성)

  • Park, Se-Young;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.725-730
    • /
    • 2012
  • HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate; cross-linker), MMA (methyl methacrylate) and AA (acrylic acid) were copolymerized with ethyl gallate and propyl gallate as additives in the presence of AIBN (2,2'-azobisisobutyronitrile; initiator). The measurement of physical properties of the produced copolymers exhibited that refractive index, water content, visible transmittance, tensile strength, and contact angle were in the range of 1.433-1.435, 38.71-38.99%, 85.4-88.8%, 0.2468-0.2740 kgf and $49.77-36.29^{\circ}$, respectively. The transmittances of the copolymers were measured to be in the range of 49.0-7.4% and 71.0-43.4% for UV-B and UV-A, respectively, indicating that the copolymers have UV-blocking effect. The produced copolymers containing ethyl gallate and propyl gallate satisfied the basic physical properties required for the fabrication of hydrogel contact lenses. The copolymers showed an increase of wettability and UV-blocking effects while having no significant change in water content compared to the gallate-free copolymers.

Surface Hydrophilization of PVDF Membrane by Thermal Polymerization Lamination Process (열중합 Lamination 공정에 의한 PVDF 분리막의 표면 친수화)

  • Lee, Se-Min;Byun, Young-Jin;Kim, Jin-Ho;Kim, Sung Soo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • Hydrophilic monomers were polymerized for lamination on polyvinylidene fluoride (PVDF) membrane surface for hydrophilization of the membranes. Hydrophilization reduced the contact angle from $95^{\circ}$ to $55^{\circ}$ and enhanced the water flux by 10 times while it reduced the bovine serum albumin (BSA) adsorption amount to 1/4 level. Thermal polymerization process was optimized by examining several operation parameters. Dimethyl oxobuthyl acrylamide (DOAA) showed the best effect due to its better hydrophilicity than others. Increase of amount of monomer enhanced the performance until the optimum concentration of 30 wt%, beyond which excess amount of monomer resulted in homopolymerization to deteriorate the performance. Azobis (isobutyronitrile)(AIBN) initiator has greater activation temperature range than benzoyl peroxide (BPO) and it showed better hydrophilation performance. Two stage lamination process, application of initiator followed by monomer addition, was more effective than one stage process, addition of initiator and monomer at once, which still reduced the contact angle but also reduced the water flux by pore blocking phenomena.