• 제목/요약/키워드: Water-Wall Tube

검색결과 155건 처리시간 0.021초

초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구 (A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

수평원통 관에서 선회유동의 공기동 발생에 관한 실험적 연구 (An Experimental Study on the Generation of Air-core with Swirl Flow in a Horizontal Circular Tube)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.922-930
    • /
    • 2004
  • An experimental investigation was performed to study on the generation of air bubble and air core with swirling flow in a horizontal cicular tube. To determine some characteristics of the flow, 2D PIV technique is employed for velocity measurement in water. The experimental rig is manufactured from an acryl tube. The test tube diameter of 80mm, and a length of 3000mm. The used algorithm is the gray leve cross-correlation method(Kimura et al. 1986). An Ar-ion laser is used and the light from the laser(500mW) passes through a probe to make two-dimensional light sheet. In order to make coded images of the tracer particles on one frame, an AOM(Acoustic-Optical Modulator) is used. The maximum axial velocities showed near the test tube wall at y/D =0.1 and y/D =0.9 along the test tube. The higher Reynolds number increase, the lower axial velocities are showed in the center of the test tube. The air bubbles are generated from Re =10,000 and developed into air core from the recirculating water pump rpm equal 30Hz. The pressure and temperature are measured across the test tube at X/D=3.33.

익수자 구조를 위한 구조 장비 디자인 연구 (Design Research for Life-saving Rescue Equipment at Water)

  • 전영원;이혁수
    • 융복합기술연구소 논문집
    • /
    • 제2권2호
    • /
    • pp.13-19
    • /
    • 2012
  • This Design research is a design of rescue equipment combined with beach garbage can for prompt rescue at the time of the accident in water. As a usual, it is used as garbage can hanging a garbage bag on the holders located in both sides, and it can be used to rescue drowning men promptly taking out a rescue tube located inside of the equipment at the time of the accident in water. Support is consisted of beach one, wall-hanging one and pipe one, and it could be installed to match the situation because it can be combined with all main frames. As a usual, it is used as garbage can in seaside, but it can be used to rescue drowning men promptly taking out a rescue tube after pulling the handle located in front of main frame at the time of the accident in water, and it can be used to pull drowning men out of the water because rope is kept in rescue tube.

  • PDF

관내 유동 플라스틱 슬러리의 열전달 특성 (Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

A Study on Velocity Profiles between Two Baffles in a Horizontal Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.136-142
    • /
    • 2015
  • The shell and tube heat exchanger is an essential part of a power plant for recovering transfer heat between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional PIV (Particle Image Velocimetry) around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the velocity vectors near the front baffle flow along the vertical wall, and then concentrate on the upper opening of the front baffle. The velocity profiles circulate in the front and rear baffle. These profiles are related to the Reynolds number (Re) or the flow intensity. Velocity profiles at lower Re number showed complicated mixing to obtain the velocities and concentrate on the lower opening of the rear baffle as front wall. Numerical simulations were performed to investigate the effects of the baffle and obtain the velocity profiles between the two baffles. In this study, a commercial CFD package, Fluent 6.3.21 with the turbulent flow modeling, k-${\epsilon}$ are adopted. The path line and local axial velocities are calculated between two baffles using this program.

튜브 직경이 풀핵비등 열전달에 미치는 영향 (Effects of Tube Diameter on Nucleate Pool Boiling Heat Transfer)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.930-937
    • /
    • 2000
  • A series of data sets for the heat transfer coefficient versus wall superheat has been obtained experimentally using various combinations of tube diameters ($9.7{\sim}25.5mm$), surface roughness ($15.1{\sim}60.9nm$), and tube orientations (horizontal and vertical) to obtain effects of tube diameters on nucleate pool boiling heat transfer for the saturated water at atmospheric pressure. In addition, the results are compared with the well known Cornwell and Houston's correlation for horizontal tubes to identify the deviation of the present experimental data from the correlation and the applicability of it to vertical tubes. The experimental results show that the heat transfer coefficient decreases as the tube diameter increases for both horizontal and vertical tubes and they are in good agreement with the Cornwell and Houston's correlation within ${\pm}20%$ scatter range.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

폐회로 습도계를 이용한 수증기 플럭스 관측시관의 감쇠 효과에 관하여 (On the Effect of Tube Attenuation on Measuring Water Vapor Flux Using a Closed-path Hygrometer)

  • 홍진규;김준;최태진;윤진일
    • 한국농림기상학회지
    • /
    • 제2권3호
    • /
    • pp.80-86
    • /
    • 2000
  • 에디 공분산 방법은 생태계와 대기간의 질량과 에너지 교환을 측정하는데 널리 사용되고 있다. 이 방법은 다른 미기상학적 방법과는 달리 많은 가정을 필요로 하지 않는 직접 측정으로서, 스칼라의 농도 변화를 측정하기 위해 고속 반응의 개회로 또는 폐회로 기기를 필요로 한다. 후자를 사용할 경우, 흡입된 공기가 관을 통과하면서 스칼라의 농도 변동의 감쇠가 일어난다. 이러한 관 감쇠 효과는 측정하고자 하는 난류 플럭스를 과소 평가하게 한다. 난류 흐름의 감쇠 효과를 정량화하기 위해서 개회로 기기와 폐회로 기기로 측정된 수증기 농도를 각각 분석하였다. 통계적 분석에 의하면, 폐회로 기기에서 얻어진 스펙트럼이 0.5 Hz 이상의 영역에서 개회로 기기에서 얻어진 스펙트럼과 서로 다름을 보였다. 낮에는 관 감쇠에 의한 수증기 플럭스의 손실이 5% 이내였으나, 밤에는 풍속이 작고, 난류의 강도가 약하여 플럭스 손실이 상대적으로 크게 나타났다. 이론적으로 계산된 플럭스 손실은 관측 결과와 고주파수 영역에서 약간의 차이를 보였는데, 이것은 수증기가 관의 벽과 상호 작용하면서 플럭스 측정에 영향을 주었기 때문인 것으로 추정된다. 결론적으로, 개회로나 폐회로기기 모두 5% 오차 내에서 수증기 플럭스 관측에 사용할 수 있다. 그러나 대기가 안정할 때는 플럭스 산출시 고주파수에서의 영향을 신중히 고려해 주어야 한다.

  • PDF

맥동연소온수기의 연소실과 노도의 컴퓨터 시뮬레이션 (A Computer Simulation of the Combustion and Flueway of a Pulse Combustion Water Heater)

  • 강건;신세건;김민식
    • 태양에너지
    • /
    • 제9권3호
    • /
    • pp.64-72
    • /
    • 1989
  • In this study, the computer simulation for the heat transfer in pulse combustion water heater is performed. The attention is focused to the effects of the installation of corebuster in the flue tube on heat transfer. The energy equations are established for both wall and gas side in the combustion chamber, flue way, exhaust chamber and muffler, and the numerical calculation is executed. Zone method takes longer computer calculation time compared with semi-zone method. Semi-zone method is chosen for numerical calculation. As a result of this study, it is found that the installation of the core buster in flue tube increases total heat transfer. It is also found that the total heat transfer is increased with the increasing of the ratio of the cross section area of corebuster to that of the flue tube. However, the heat transfer effect is negligible for the area ratio above 0.5.

  • PDF