• 제목/요약/키워드: Water-Source Heat Pump

검색결과 271건 처리시간 0.028초

정수장 내 원수열원 및 공기열원 히트펌프의 냉난방 운전 특성 (Cooling and Heating Operation Characteristics of Raw-water Source Heat Pump and Air Source Heat Pump in Water Treatment Facility)

  • 오선희;윤린;조용
    • 설비공학논문집
    • /
    • 제25권7호
    • /
    • pp.386-391
    • /
    • 2013
  • The dynamic characteristics of both raw-water source and air source heat pump utilized in water treatment facilities were investigated by using TRNSYS simulator. The modeling of the raw water source heat pump was verified by the measured data at the Cheongju water treatment facility, and the modeling at the air source heat pump was verified by the data from the Siheung water treatment facility. The average heating and cooling COPs from the raw-water source heat pump were higher than those of the air source heat pump by 19% and 18%, respectively. The power consumptions of the air source heat pump for the cooling and the heating were higher than those of the raw water source heat pump by 28% and 26%, respectively.

유출지하수 열원 지열히트펌프시스템의 난방성능 (Heating Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;이응열
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.40-46
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}...$ annually and the quality of that water is as good as well water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000\;ton/day$. The heat pump capacity is 5RT. The heat pump heating COP was $3.85{\sim}4.68$ for the open type and $3.82{\sim}4.69$ for the close type system. The system heating COP including pump power is $3.0{\sim}3.32$ for the open type and $3.32{\sim}3.84$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.47-53
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effluent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000ton/day$. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.471-476
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and c lose type heat pump system using effluent ground water was installed and tested for it church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000$ ton/day. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

지열원 열펌프 시스템의 에너지 생산량 모니터링 신뢰도 향상 방안 연구 (A Study on the Monitoring Methods for Energy Production in Ground Source Heat Pump System)

  • 강신형;이광호;도성록;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.10-16
    • /
    • 2019
  • In this study, the present regulation of heat metering for the ground source heat pump was investigated. The ground source heat pump has been adopting the heat metering system used in the district heating system for estimating the heating and cooling energy production amount. The accuracy of the present heat metering systems for a water to water ground source heat pump is low, because the system for district heating has a relatively high temperature range comparing with the ground source heat pump operating conditions. Even though the heat amount for the building side should be measured, the heat absorption and extraction amount from or to the ground was measured for the water to air ground source heat pump due to the difficulty of estimating the air side heating and cooling capacity in the present regulation. It is highly recommended to validate the heat metering system to have reliability for the ground source heat pump and develop the system to be applicable water to air ground source heat pump.

2단 압축 수열원 열펌프 시스템의 부분부하 운전특성에 관한 연구 (A study on the part-load performance of 2-stage water source heat pump)

  • 이영수;백영진
    • 한국지열·수열에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.13-17
    • /
    • 2009
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. In this study, an experimental study on a 2-stage heat pump, which is designed to utilize a river water heat source, were carried out. Generally, a heat pump is designed for maximum capacity rate, but it actually operates at part load condition in most cases. Therefore, an information on the part-load characteristic is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes.

  • PDF

하천수 열원 열펌프 시스템의 성능 특성 및 경제성 평가 (Performance Characteristics and Economic Assessment of a River Water: Source Heat Pump System)

  • 박차식;정태훈;박홍희;김용찬
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.621-628
    • /
    • 2009
  • The objectives of this study are to analyze the performance of a river water-source heat pump and to carry out economic assessment for the heat pump. The COP of the river water-source heat pump was 3-21% higher than that of the air-source heat pump because river water provides stable operating temperature compared with air temperature throughout the year. The economic analysis was carried out by comparing the initial and operating cost of the river water-source heat pump with those of the conventional air-source heat pump. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.5 years when the capacity of the river water-source heat pump was larger than 10 RT.

물-물 수온차 히트펌프 시스템의 원수온도에 따른 성능 특성 분석 (Analysis on Cooling and Heating Performance of Water-to-Water Heat Pump System for Water Source Temperature)

  • 박태진;조용;박진훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • The research assesses the performance of the water-to-water heat pump system installed in Cheongju water treatment plant for cooling and heating ventilation. In summer season monthly averaged COP is ranged from 3.85 to 4.56 according to the water source temperature, and the performance is increased as the raw water temperature is dropped. While, heating performance is increased for the high temperature water source, and the monthly averaged COP is changed from 2.92 to 3.82. The correlation of the water source temperature and the heat pump performance shows a linear tendency by the simple regression of average data. In heating, the COP of heat pump system linearly rises according to the water source temperature. In comparison, the COP in cooling linearly reduces as the raw water temperature is raised. The goodness of fit at the simple regression shows the coefficient of determination 82% in cooling, 46% in heating. The electric cost of water-to-water heat pump is reduced by 40% compared to that of air source heat pump.

  • PDF

하천수 열원 이용 열펌프 시스템의 LCC 분석 (LCC Analysis of a Heat Pump System Using River Water)

  • 한상수;박차식;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1424-1428
    • /
    • 2009
  • The performance of a heat pump using river water as a heat source was compared with that of a conventional air-conditioner for cooling and a boiler system for heating. The heat pump system using river water considered the 1-stage cycle for cooling and the 2-stage cycle for heating. The COPs of the river water source heat pump were $0.5{\sim}1.1$ higher than those of the conventional system in the cooling season. The LCC of the river water source heat pump system was lower 13.5% and 32.4% than that of the conventional system I and II. In addition, when the initial cost ratios of the river water source heat pump system to the conventional system I and II were less than 1.2 and 1.4, respectively, an acceptable payback was found to be less than 5 years.

  • PDF

열원에 따른 열펌프의 성능 비교 및 경제성 평가 (Performance Characteristics and Economic Assessment of Heat Pump Systems with the Various Heat Source)

  • 박차식;박경우;권오경
    • 한국지열·수열에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.23-31
    • /
    • 2011
  • The objectives of this study are to analyze the performance of a heat pump system with the various heat source and to carry out economic assessment for the heat pump system. The COP of the river water and ground source heat pump system was 20% higher than that of the air source heat pump system because river water and geothermal provide stable operating temperature compared with air temperature throughout the year. In addition, the economic assessment of a heat pump system using air, river water, and geothermal as a heat source was carried out. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.3 and 4.5 years, respectively when the capacity of the river water and ground source heat pump was larger than 10 RT.