• Title/Summary/Keyword: Water wall

Search Result 1,663, Processing Time 0.032 seconds

Experimental Study on Freezing Soil Barrier Wall for Contaminant Transfer Interception (오염물질 이동 차단을 위한 동결차수벽 형성에 관한 실험적 연구)

  • Shin, Eun-Chul;Kim, Jin-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • The purpose of this study was to prevent spreading of contaminants from movement of underground water by creating a barrier using artificial freezing method on a soil contaminated by oils and various DNAPLs. Specimens with 80% and 90% degrees of saturation were prepared to form freezing barrier using artificial freezing method. As the results of freezing specimen within soil bin with artificial ground freezing system, artificial contaminated soil cut off wall formed the thinnest wall after 12 hours. It is judged that this cut off wall will control the second soil pollution by intercepting expansion and movement of pollutants and DNAPLs within artificial contaminated soil cut off wall by underground water, intercepting inflow or outflow of underground water. Cut off walls formed by artificial ground freezing system had each other freezing speed according to degree of saturation.

CHEMICAL COMPATIBILITY OF SOIL-BENTONITE CUT-OFF WALL FOR IN-SITU GEOENVIRONMENTAL CONTAINMENT

  • Inui, Toru;Takai, Atsushi;Katsumi, Takeshi;Kamon, Masashi;Araki, Susumu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.135-139
    • /
    • 2010
  • A construction technique to install the soil-bentonite (SB) cut-off wall for in-situ geoenvironmental containment by employing the trench cutting and re-mixing deep wall method is first presented in this paper. The laboratory test results on the hydraulic barrier performance of SB in relation to the chemical compatibility are then discussed. Hydraulic conductivity tests using flexible-wall permeameters as well as swell tests were conducted for SB specimens exposed to various types and concentrations of chemicals (calcium chloride, heavy fuel oil, ethanol, and/or seawater) in the permeant and/or in the pore water of original soil. For the SB specimens in which the pore water of original soil did not contain such chemicals and thus the sufficient bentonite hydration occurred, k values were not significantly increased even when permeated with the relatively aggressive chemical solutions such as 1.0 mol/L $CaCl_2$ or 50%-concentration ethanol solution. In contrast, the SB specimens containing $CaCl_2$ in the pore water had the higher k values. The excellent linear correlation between log k and swelling pressure implies that the swelling pressure can be a good indicator for the hydraulic barrier performance of the SB.

  • PDF

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

Obstacle Recognition and Avoidance of the Bio-mimetic Underwater Robot using IR and Compass Senso (IR 센서 및 Compass 센서를 이용한 생체 모방형 수중 로봇의 장애물 인식 및 회피)

  • Lee, Dong-Hyuk;Kim, Hyun-Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.928-933
    • /
    • 2012
  • In this paper, the IR and compass sensors for the underwater system were used. The walls of the water tank have been recognized and avoided treating the walls as obstacles by the bio-mimetic underwater robot. This paper is consists of two parts: 1.The hardware part for the IR and compass sensors and 2.The software part for obstacle avoidance algorithm while the bio-mimetic robot is swimming with the obstacle recognition. Firstly, the hardware part controls through the RS-485 communications between a microcontroller and the bio-mimetic underwater robot. The software part is simulated for obstacle recognition and collision avoidance based upon the data from IR and compass sensors. Actually, the bio-mimetic underwater robot recognizes where is the obstacle as well as where is the bio-mimetic robot itself while it is moving in the water. While the underwater robot is moving at a constant speed recognizing the wall of water tank as an obstacle, an obstacle avoidance algorithm is applied for the wall following swimming based upon the IR and compass sensor data. As the results of this research, it is concluded that the bio-mimetic underwater robot can follow the wall of the water tank efficiently, while it is avoiding collision to the wall.

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Design Concept and Technology Development of a Double-Wall-Tube Steam Generator (이중벽관 증기발생기의 설계개념 기술개발)

  • Nam, Ho-Yun;Choi, Byoung-Hae;Kim, Jong-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1217-1225
    • /
    • 2010
  • The possibility of a sodium-water reaction occurring in a conventional single-wall-tube steam generator in an SFR is a major problem. To improve the reliability of a steam generator, a double-wall-tube steam generator that can reduce the possibility of the occurrence of a sodium-water reaction is being developed. Current developments are focusing on improving the heat-transfer capability of a double-wall tube; further, the development of a leak-detection method to detect the occurrence of a sodium-water reaction during the reactor operation is also underway. In this study, new concepts, which will solve the above-mentioned problems, have been developed. Accordingly, a double-wall tube has been designed, fabricated, and mechanically tested for the purpose.

An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine (가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究))

  • Kwon, K.R.;Ko, J.K.;Hong, S.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.

A Study of Environment-friendly outer wall facilities for the improvement of port pollution (항내오염 개선을 위한 친환경 외곽시설에 관한 연구)

  • 김강민;강석형;유하상;김상훈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.165-170
    • /
    • 2003
  • Due to the impermeability of outer wall facilities such a Breakwaters which dissipates the wave energy and keeps harbor tranquility, the water exchange can be worse and increased enclosed at the harbor. Recent trends of port development protect water quality and emphasize Water-Front, so the method which enhances the circulation of harbor waters and the dilution of the water pollutants are studied. The best improvement of water quality is a remove of pollutant source on land, but an enclosed port must be enhanced the tidal exchange. To this hence, the best improvement may be made on drain-route on the existing outer wall facilities. In this study, the numerical computations were carried out to predict the circulation of harbor waters and the tidal exchange in the polluted harbor(Samchonpo-guhang) located at the east coast of South Sea. Computational models adopting FDM(Finite Difference Method) were used here and were already verified from the previous studies and ocean survey. As a result of this study, the tidal exchange in Samchonpo-guhang before and after installation of drain-route is assessed.

  • PDF

The Study on Constructing Underground Wall to Prevent Seawater Intrusion on Coastal Areas (지하수댐 물막이벽 시공법과 해안지역 염수침입 방지기술 개선 방안)

  • 부성안;이기철;김진성;정교철;고양수
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.215-234
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control, Groundwater Dam had initiated its construction by RDC(former KARICO) in early eighties in Korea and 4 of it in total were added more until late eighty. However, this technique has shrunken its application due to gradually decreased yield rate after sever years of construction. After we studied several existing sites precisely, we concluded that the main reason of decreasing yield rate was come form engineering roughness on construction in early nineties. Theoretically, the technique itself seemed to be little detectives however, there were a little application in the fields in Korea. With the recent advance in engineering fields, those defects in construction would be no longer obstacle to construct underground wall and the technique could be a one of major ground water production technique in the future. It is essential to study following items thoroughly before select the appropriate site. The topography and the site of the underground wall, aquifer distribution, the specific technique for wall construction to block groundwater flow effectively and strict quality control during construction are critical. The surface and ground water monitoring data should be collected. Sustainability of the Groundwater Dam with huge groundwater abstraction in long term should be based on the long-term water balance analysis for each site. The water quality, environmental effect analysis and maintenance achedule should be also analyzed and planned in prior. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.