• 제목/요약/키워드: Water vapor permeation barrier

검색결과 24건 처리시간 0.031초

Improvement in the Negative Bias Stability on the Water Vapor Permeation Barriers on ZnO-based Thin Film Transistors

  • 한동석;신새영;김웅선;박재형;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.450-450
    • /
    • 2012
  • In recent days, advances in ZnO-based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). In particular, the development of high-mobility ZnO-based channel materials has been proven invaluable; thus, there have been many reports of high-performance TFTs with oxide semiconductor channels such as ZnO, InZnO (IZO), ZnSnO (ZTO), and InGaZnO (IGZO). The reliability of oxide TFTs can be improved by examining more stable oxide channel materials. In the present study, we investigated the effects of an ALD-deposited water vapor permeation barrier on the stability of ZnO and HfZnO (HZO) thin film transistors. The device without the water vapor barrier films showed a large turn-on voltage shift under negative bias temperature stress. On the other hand, the suitably protected device with the lowest water vapor transmission rate showed a dramatically improved device performance. As the value of the water vapor transmission rate of the barrier films was decreased, the turn-on voltage instability reduced. The results suggest that water vapor related traps are strongly related to the instability of ZnO and HfZnO TFTs and that a proper combination of water vapor permeation barriers plays an important role in suppressing the device instability.

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • 한동석;문대용;박재형;강유진;윤돈규;신소라;박종완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

폴리머 기판에 형성한 알루미늄 보호막의 수분침투 특성 연구 (Study on the Water-Vapor Permeation through the Al Layer on Polymer Substrate)

  • 최영준;하상훈;박기정;최영선;조영래
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.873-880
    • /
    • 2009
  • Water-vapor permeation through metallic barriers deposited on polymer substrates has been an important technological issue because the performance of the barrier is critical to the reliability of flexible organic devices. For the development of long-lifetime flexible organic devices, two different sets of samples were designed and demonstrated from the viewpoint of the water-vapor transmission rate (WVTR). Aluminum (Al) and polyethylene terephthalate (PET) were chosen for the barrier layer and the polymer substrate, respectively. Two stacking structures, a single-layer (Al/PET) structure and a double-layer (Al/PET/Al) structure, were used for the WVTR measurement. For the single-layer structure, the WVTR decreases as the thickness of the barrier layer increases. Compared to the single-layer sample, the double-layer sample showed superior WVTR performance (by nearly three times) when the total thickness of the Al barrier was greater than 100 nm.

A new method for measuring ultra-low water vapor permeation for OLED displays

  • Dunkel, Ralf;Bujas, Roko;Klein, Andre;Horndt, Volker;Wrosch, Matt
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.589-593
    • /
    • 2005
  • It is well known that proper encapsulation is crucial for the lifetime of organic light emitting diode (OLED) displays. With the development of increasingly better barrier coatings and perimeter seals, it has now become very desirable to be able to precisely measure the rate of water vapor and oxygen permeation through barrier coatings and perimeter sealing. This paper demonstrates a new permeation measurement method that uses tritium-containing water (HTO) as a tracer material. The theoretical detection limit of this direct method is $2.4{\times}10^{-8}g/(m^2day)$.

  • PDF

다양한 플라스틱 기판위에 $(SiO_2)_3(ZnO)_7$ 보호층을 갖는 투명 전도성 박막들의 특성 향상 (Enhanced characteristics of TCO films with $(SiO_2)_3(ZnO)_7$ gas barrier layer on various plastic substrates)

  • 권오정;김동영;유성원;손선영;홍우표;김화민;홍재석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.283-284
    • /
    • 2008
  • Electrical and optical characteristics of indium tin oxide (ITO) and indium zinc oxide (IZO) films without and with $(SiO_2)_3(ZnO)_7$ at.% (SZO) film deposited on poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate (PET) substrates as a gas barrier layer for flexible display were studied. The ITO and IZO films with SZO gas barrier layer showed the improved properties which were both the high transmittance of average 80% in the visible light range and the decreased sheet resistance as compared to those of ITO and IZO films without SZO layer. Particularly, the PEN substrate with only SZO gas barrier layer had a low water vapor transmission rate (WVTR) of $\sim10^{-3}g/m^2$/day. Thus, we suggest that the SZO film with protection ability against the water vapor permeation can be applied to gas barrier layer for flexible display.

  • PDF

폴리에스테르/폴리이미드 나노복합필름의 제조 및 수분차단 특성 (Preparation and Water Vapor Barrier Properties of PET/Nanohybrid PI Films)

  • 한승산;김용석;원종찬;이재흥;최길영
    • 접착 및 계면
    • /
    • 제5권1호
    • /
    • pp.29-35
    • /
    • 2004
  • 친유기 합성 층상실리케이트(STN)의 함량(1~9 wt%)을 변화하며 폴리아믹산/STN 나노복합재용액을 DMAc 및 THF/MeOH 혼합용매에서 각각 제조하였고, 이를 폴리에스테르 필름에 코팅하여 열적 이미드화 및 화학적 이미드화 반응을 통하여 폴리에스테르/폴리이미드 나노복합필름을 제조하였다. XRD 및 TEM을 이용하여 제조된 폴리에스테르/폴리이미드 나노복합필름의 미세 구조를 조사한 결과 박리형 폴리이미드 나노복합재가 제조되었음을 확인하였다. 표면의 모폴로지 변화는 AFM을 통하여 확인하였으며, 열적 및 기계적 특성은 TGA, DMA와 UTM을 통하여 측정하였다. 또한 STN이 첨가됨에 따라 폴리에스테르/폴리이미드 나노복합필름의 수분투과도는 감소하였고, 화학적 이미드화에 의해 제조된 필름이 열적 이미드화에 의한 필름에 비해 좀더 우수한 수분 차단성을 보였다. 또한 상대적으로 비점이 낮은 THF/MeOH 혼합용매 시스템의 경우가 DMAc를 용매로 사용한 경우보다 더 향상된 수분 차단성을 보였다.

  • PDF

유기 EL 보호층으로 적용하기 위한 무기 복합 박막의 투습율 특성 연구 (Study on the Water Vapor Permeation Properties of the Inorganic Thin Composite Film for the Passivation Layer in the OLED)

  • 김광호;이주원;김영철;주병권;김재경
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.432-438
    • /
    • 2004
  • In this study, we investigated the WVTRs Properties of inorganic thin composite films(ITCFs) to be newly adopted as the passivation layer of the OLED to replace the inorganic compound material Because we thought that inorganic compound materials were limited to enhance the barrier property of thin film. So, ITCFs were fabricated by mixing the cooperated material with the base material. And then, ITCFs were deposited onto the plastic substrate using the electron beam evaporation system and the water vapor transmission rates(WVTRs) were measured using the Mocon equipment. As a result of the WVTR measurement, we could analyze the WVTR values for various ITCFs. ITCFs had a remarkably lower value than the inorganic compound film. Through the analysis of thin film, we can understand the crystal structure and mixed amount. Therefore, ITCFs can be used as the inorganic passivation layers of OLED with the inorganic compound film.

조미김 포장을 위한 PET/PVA-BA/OPP 다층필름 제조 및 특성분석 (Preparation and Characterization of PET/PVA-BA/OPP Multi-layer Films for Seasoned-laver Packaging)

  • 임미진;김도완;서종철
    • 한국포장학회지
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 2017
  • 수증기 및 산소에 대한 차단성이 개선된 PVA-BA 코팅 조성액의 포장소재로의 적용가능성을 확인하기 위하여 콤마 코팅과 라미네이션 공정을 이용하여 PET/PVA-BA/OPP 다층필름을 제조하였다. PCT 전 후의 PET/PVA-BA/OPP 다층필름의 기체, 수증기 차단특성 및 인장강도를 확인하였고 이를 PA/PA/EVOH/PP 다층필름의 물성과 비교하였다. PVA내 BA 함량이 증가함에 따라 물성이 증가하는 것을 확인할 수 있었지만, PCT 후 PET/PVA-BA/OPP 다층필름의 산소, 수증기 차단특성 및 인장강도는 감소하는 경향을 보였다. 이는 PVA-BA층 내 증가한 가교밀도와 관련이 있는 것으로 판단된다. 또한, 조미김을 이용한 저장특성분석에서, PET/PVA-BA/OPP다층필름은 PP/Al-metallized PP 다층필름에 비해 조미김의 지방산화를 야기시키는 요인을 효과적으로 억제하는 것으로 판단된다. 하지만, PP/Al-metallized PP 다층필름에 비해 PET/PVA-BA/OPP 다층필름의 상대적으로 높은 수분투과특성 때문에 Aw에 큰 장점을 확인하지 못하였다. 따라서, 물성 극대화 및 포장소재로 적용을 위해서는 PET/PVA-BA/OPP 다층필름 내 수분 차단성 향상에 대한 추가적인 연구가 필요하다는 것을 확인하였다.

OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석 (Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments)

  • 이사야;송윤석;김현;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

연속공정기반 저온 상압 원자층 증착 시스템을 이용한 유무기 멀티레이어 배리어 박막에 관한 연구 (A Study on the Organic-Inorganic Multilayer Barrier Thin Films Using R2R Low-Temperature Atmospheric-Pressure Atomic Layer Deposition System)

  • 이재욱;김현범;최경현
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, the organic material Poly(methyl methacrylate) PMMA is used with inorganic $Al_2O_3$ to fabricate organic-inorganic multilayer barrier thin films. The organic thin films are developed using a roll-to-roll electrohydrodynamic atomization system, whereas the inorganic are grown using a roll-to-roll low-temperature atmospheric pressure atomic layer deposition system. For the first time, these two technologies are used together to develop organic-inorganic multilayer barrier thin films in atmospheric condition. The films are grown under optimized parameters and classified into three classes based on the layer structures, when the total thickness of the barrier is maintained at ~ 160 nm. All classes of barriers show good morphological, optical and chemical properties. The $Al_2O_3$ films with a low average arithmetic roughness of 1.58 nm conceal the non-uniformity and irregularities in PMMA thin films with a roughness of 5.20 nm. All classes of barriers show a notably good optical transmission of ~ 85 %. The hybrid organic-inorganic barriers show water vapor and oxygen permeation in the range of ${\sim}3.2{\times}10^{-2}g/m^2/day$ and $0.015cc/m^2/day$ at $23^{\circ}C$ and 100% relative humidity. It has been confirmed that it can be mass-produced and used as a low-cost barrier thin film in various printing electronic devices.