• Title/Summary/Keyword: Water turbine

Search Result 542, Processing Time 0.033 seconds

Vessel Tank로 유입되는 폐열회수 처리에 관한 연구

  • Gu, Jae-Ryang
    • 열병합발전
    • /
    • s.66
    • /
    • pp.4-7
    • /
    • 2008
  • When a Combined cycle power plant was started, Steam turbine wasted pure water too much during prewarming of turbine. Wasted pure water gathered in vessel tank and evaporated immediately, then emitted atmosphere. We investigate method to recover the heat in vessel tank. We installed a heat exchanger in vessel tank. In this study, the designing and manufacturing procedures of the heat exchanger was presented. Also, the performance results was showed briefly.

  • PDF

CFD Performance analysis of Micro Tubular-type hydro turbine by blade shape (블레이드 형상 변화에 따른 마이크로 튜블러 수차의 CFD 성능해석)

  • Park, Ji-Hoon;Hwang, Young-Cheol;Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.1-206.1
    • /
    • 2011
  • Recently, various developments in the area of small hydropower have being made and small hydro turbines are suitable for domestic use because it is a clean and renewable energy source. A small hydropower generator produces power by using the different water pressure levels in pipe lines and energy which was initially wasted by use of a reducing valve at the end of the pipeline is instead collected by a tubular-type hydro turbine in the generator. In this study, in order to acquire the performance of tubular-type hydro turbine applied, the output power, head, efficiency characteristics due to the different guide vane and runner vane angle are examined in detail. Moreover, influences of pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine (500kW급 수평축 조류발전기의 수력 최적 설계)

  • Ryu, Ki-Wahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

Rotordynamic Design of Turbine for Large Capacity Pump drive (대용량 펌프 구동용 터빈의 로터다이나믹 설계)

  • 김영춘;박철현;김경웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.116-120
    • /
    • 2003
  • In general, industrial rotating machinery have been designed to have critical speed that is above operating speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed and high performance of rotating machinery. Therefore, it is important to predict the accuracy rotordynamic characteristics of the high speed rotating system in advance. In this paper, the results of rotordynamic analysis about FWP(Feed Water Pump) drive turbine rotor are showed. Because the FWP drive turbine analyzed is high speed machinery operated more than the operation speed of conventional FWP drive turbine, Seismic response analysis as well as unbalance response analysis is done in order to improve the reliability of the new turbine rotor-bearing system.

  • PDF

A comparison of speed control of various turbines according to power plant types (발전방식별 여러 가지 터빈의 속도제어 비교)

  • Choi, I.K.;Jeong, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2314-2316
    • /
    • 2001
  • The steam gererator which produces thermal energy from coal or gas is a very important device in power plants, including the turbine driving synchronous generator which transforms kinetic energy into electrical energy. The turbine and the generator are driven by many kinds of media according to the types of which power plants are classified into steam turbine generator, gas turbine generator, water turbine generator and so on. This paper introduces the overspeed protection as well as the various speed and load control methods of some types of turbines.

  • PDF

Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg

  • Shin, Hyunkyoung;Cho, Sangrai;Jung, Kwangjin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • A new 5-MW floating offshore wind turbine moored by a spring-tensioned-leg was proposed for installation in about 50m water depth. Its substructure is a platform of the inverted conical cylinder type with massive ballast weight plate at the bottom. A 1:128 scale model was built for the preliminary engineering development. The model tests in waves and wind were carried out to estimate motion characteristics of this platform in the Ocean Engineering Wide Tank of the University of Ulsan. Its motions were measured and the RAOs were compared. The proposed floating offshore wind turbine showed a good stability and decent responses in waves, wind and operation of the wind turbine.

Analysis of Impact on the Circulating Water System due to an Installation of Helical Current Turbine at the Discharge Channel of the Power Plant (헬리컬 조류수차 설치로 인한 발전소 배수로 계통 영향 분석)

  • Kim, Ji-Young;Kang, Keum-Seok;Ryu, Moo-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.67-72
    • /
    • 2010
  • In this study, the impact on the circulating water system has been analyzed due to an installation of helical turbine to develop hydro-kinetic energy at the discharge channel of the power plant. Numerical simulations of velocity and pressure variations have been performed when one set of $3.6\;m\;{\times}\;1.5\;m$ sized helical turbine is installed at the outlet of discharge culvert. In case of mean sea level, change of downstream water surface elevation does not affect upstream elevation of the weir because its propagation is blocked by the seal well weir. However in case of highest high water level, change of downstream elevation affects upstream elevation because flow pattern in discharge culvert becomes the full pipe flow with submerged weir. Although an unstable pressure change occurs in upstream of the weir during the intial 10 minutes after beginning of the discharge, it becomes stable after that time. In addition, a rise of water surface elevation by 0.2 m is observed but it is concluded that it hardly affects the safety of circulating water pump (CWP) although its required power is increased more or less. Therefore, the increase of required power of CWP needs to be considered for evaluation of the helical turbine applicability.

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

Sound Quality Analysis of Water Turbing Generator Noise using Zwicker Parameter (Zwicker 파라미터를 이용한 수차발전기 소음의 음질분석)

  • Kook, Joung-Hun;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.273-277
    • /
    • 2007
  • In case of the Hydraulic Turbine Dynamo operating for Waterpower Generation, it makes very huge and loud noises, and it influences bad effect physically as same as mentally to those people who are working inside of power plant, and brings the decline of an effective working efficiency. However, its evaluation method or measure about such noise reflects merely its physical attribute which is sensuous Loudness of the Noise itself, since the accumulation effect of Noise or the meaning connected with psychological response did not reflect, it is the actual state that a rational evaluation is unable to expect. Consequently, this Study has attempted to evaluate the Noise of Hydraulic Turbine Dynamo by analyzing the sound quality using Zwicker‘s Psychological Acoustic Parameter, after classification by its positions of the Noise occurring at Hydraulic Turbine Dynamo.

  • PDF