• Title/Summary/Keyword: Water to air GSHP

Search Result 28, Processing Time 0.026 seconds

Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System (물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구)

  • Hong, Boo-Pyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature (외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.

Cooling Performance of a Ground Source Heat Pump System (지열히트펌프시스템의 냉방운전에 따른 성능연구)

  • Lee, Jae-Keun;Jeong, Young-Man;Koo, Kyoung-Min;Hwang, Yu-Jin;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.441-446
    • /
    • 2007
  • This present study is to evaluate the cooling performance of a water-to-refrigerant ground source heat pump system(GSHP) under actually operating condition. 1 unit is selected among 10 units of the GSHP in the building to analyze the performance. The average cooling COP of the GSHP at the part load of 64% is 8.2, overall system COP is 6.19. In the GSHP system, the cooling temperature of the condenser is lower compared to the air source heat pump system. Conclusively, the cooling performance of the GSHP is higher than the air source heat pump system by 80%.

  • PDF

An Economic Analysis of a Secondary Waste Heat Recovery Geothermal Heating System (2단 가열식 지열시스템의 경제성 분석)

  • Shin, Jeong Soo;Kim, Sean Hay
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.249-258
    • /
    • 2017
  • This paper provides an economic analysis of a new geothermal heat pump system that reuses condenser waste heat from a Ground Source Heat Pump ($GSHP_{ch}$) to provide energy for a hot water Ground Source heat pump ($GSHP_{hw}$). After conducting feasibility tests using GLD and TRNSYS simulations, the proposed system was effectively installed and thoroughly tested. We observe that 1) the Coefficient of Performance (COP) of the $GSHP_{hw}$ and the $GSHP_{ch}$ during cooling mode improves by up to 62% and 7%, respectively; 2) the number of bore holes can be reduced by two; and 3) the hot water supply temperature of the $GSHP_{hw}$ increases by up to $60^{\circ}C$. We further conclude that 1) the reduction of two bore holes can save approximately ten million Won from the initial cost investment; and 2) the increased COP of the $GSHP_{hw}$ can save approximately one million Won in annual electricity costs.

ISO performance data based commissioning technique for GSHP system (ISO 성능데이터를 이용한 지열히트펌프 시스템의 성능 확인 커미셔닝 기술)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the system reliability has been key issues and barriers to insure a better system performance as designed originally in ISO (international standard organization) standard. This paper introduces a systematic method to verify its intended design target so called as ISO performance data based commissioning technology for a water to air GSHP system. The commissioning technology starts from are to the international standard ISO performance data of a GSHP model and to compare its installed operation data and to calibrate and tune to the target optimum operation parameters. Results indicated that cooling capacity could be raised up to 76.6% from 46.6% from this proposed commissioning technology.

  • PDF

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

Prediction of the Heat Exchange Rate for a Horizontal Ground Heat Pump System Using a Ground Heat Transfer Simulation (지중열 이동 시뮬레이션을 이용한 수평형 지열시스템의 채열성능 예측)

  • Nam, Yujin;Chae, Ho-Byung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.297-302
    • /
    • 2013
  • The ground source heat pump (GSHP) system has attracted attention, because of its stability of heat production, and the high efficiency of the system. However, there are few studies on the prediction method of the heat exchange rate for a horizontal GSHP system. In this research, in order to predict the performance of a horizontal GSHP system, coupled simulation with a ground heat transfer model and a heat exchanger circulation model was developed, and calculation of heat exchange rate was conducted by the developed tool. In order to optimally design the horizontal GSHP system, the flow rate of circulation water, and the depth and buried spaces of heat exchangers were considered by the case study. As a result, the temperature of circulation water and the heat exchange rate of the system were calculated in each case.

Heating Performance of a Ground Source Heat Pump System through Actual Operation (지열원 히트펌프시스템의 실사용을 통한 난방성능연구)

  • Koo, Kyoung-Min;Jeong, Young-Man;Hwang, Yu-Jin;Lee, Jae-Keun;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1341-1346
    • /
    • 2008
  • This paper presents the heating performance of a water-to-refrigerant type ground source heat pump system (GSHP) installed in a school building. The evaluation of the heating performance has been conducted under the actual operating conditions of GSHP system in the winter. Ten units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. For analyzing the heating performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the heating capacity and the input power were evaluated for determining the heating performance of the GSHP system. The average heating coefficient of performance (COP) of the heat pump was found to be 5.1 at partial load of 46.9%, while the overall system COP was found to be 4.2.

  • PDF

Heating Performance of a Ground Source Heat Pump System through Actual Operation (지열원 히트펌프시스템의 실사용을 통한 난방성능연구)

  • Koo, Kyoung-Min;Jeong, Young-Man;Hwang, Yu-Jin;Lee, Jae-Keun;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.788-793
    • /
    • 2008
  • This paper presents the heating performance of a water-to-refrigerant type ground source heat pump system (GSHP) installed in a school building. The evaluation of the heating performance has been conducted under the actual operating conditions of GSHP system in the winter. Ten units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. For analyzing the heating performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the heating capacity and the input power were evaluated for determining the heating performance of the GSHP system. The average heating coefficient of performance (COP) of the heat pump was found to be 5.1 at partial load of 46.9%, while the overall system COP was found to be 4.2.

  • PDF

Assessing the Economic and $CO_2$ Emission Reductions Viability of Domestic Ground-Source Heat Pumps (단독주택용 지열 열펌프 시스템의 경제성과 이산화탄소 배출 저감 가능성 평가)

  • Sohn, Byong-Hu;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.64-69
    • /
    • 2009
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total greenhouse gas emissions than the alternative HVAC systems considered in this work.

  • PDF