• Title/Summary/Keyword: Water time

Search Result 15,216, Processing Time 0.042 seconds

Curtailment of Water use Through the Integration of Process Waste Waters at the Standard Thermal Power Plant (표준화력발전소의 발전폐수 통합을 이용한 용수 사용량 절감)

  • Mun, Gyeong-Seok;Jang, Heui-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.437-443
    • /
    • 2006
  • The Water usage is relationship which is close with the administrative cost from industrial facility. It is not easy to reduce a water usage. This research is the optimization of the waste water quantity which process waste water integration of the standard thermal power plant in system operate time. The turbine rotates by force of the steam and it produces an electricity. Demineralization Water is manufacture purity manufacturing equipment and it is supplied in power plant channel. We knew a possibility of reducing from pure control process. When it is reduced the Back Washing time, Rinsing time of the gravity filter and the activated carbon filter. Also, It is possible even from regeneration phase in Condensate Polishing Demineralization System. In addition, There is also the water which the drain of the sampling water for watching the condition of power plant process will be able to use. Integrates these processes it will be able to reduce an annual 30,000 ton degree. The research is want to use the fundamental data for the water curtailment of the power plant.

Study of High Rate Filter. (고속여과의 효과에 관한 연구)

  • 박인규
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.91-100
    • /
    • 1977
  • This is an experimental study to raise higher efficiency of filteration than conve ntional filteration by increasing of filteration capacity for per unit area and by extending of filteration lasting time with biflow filter system which was improved from the conventional rapid sand filteration method in the process of water purification treatment. In order to raise more efficient function of filteration and giving consideration to the filter layer at upper and lower parts of the filter, the fine sand & an thracite were used as a filter medium. Although there is some difficulty than previous fine sand in procurement, it could confirm that such filter medium (fine sand & anthracite) was more effective in the field of load, lasting time and back wash, etc. In consideration of practical effect of filteration. The raw water which was used for this experimental study was not coagulated. As a result of this experiment, the filteration volume could increase more than 2 times than that of conventional method. Besides, much more advantages could be obtained for instance, the requirement of installation area was not much and installation cost could economize. On the other hand, the following results were found. The quality of filtered water became worse as time goes by and the turbidity of filtered water was more influenced by raw water turbidity than by rate of filteration. Lasting time of filteration on change of filteration rate in the filter layer reached 2 times in comparison with previous filter basin, and until loss gead reached to 1.0 meter and 1.5 meter, the following relate formulas between lasting time and rate of filteration were formed. ($T_{1.5}=181.96V^{-0.46},\;T_{1.0}=121.31V^{-0.46}$) Even though the lasting time can be shorten in case of the increase of the filteration rate, but the lasting time was prolonged more than 2 times than of previous method. With taking aim at contribution to the development of water treatment technique, we are planning to study continuously for the future study basing on the results in this papers.

  • PDF

Forecasting of flood travel time depending on weir discharge condition using two-dimensional numerical model in the channel (2차원 수치모형을 이용한 보 방류조건에 따른 하도 내 홍수도달시간 예측)

  • Lee, Hae-Kwang;Oh, Ji-Hwan;Jang, Suk-Hwan;Song, Man-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.397-409
    • /
    • 2019
  • Gate operation of hydraulic structures is important for proper management in rivers. In this study, the characteristics of flood time were analyzed and predicted using the HEC-RAS model, which is capable of one-dimensional and two-dimensional connectivity analysis of the main points downstream of the Geum river. As a result, flood travel time was decreased once discharge increase and downstream water level rising. However, When the floodplain was overflowed, the arrival time increased due to the rapid increase of the river width. Also, the same condition, flood wave travel time at the major point was approximately twice as fast as water level rising travel time, indicating that waves progressed faster than actually water. Using the results of this study, it will be helpful in the river.

Assessing the removal efficiency of Synedra sp. through analysis of field data from water treatment plants

  • Seo, Dae-Keun;Kim, Yeong-Kwan
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2020
  • Prechlorination could increase the removal efficiency of Synedra, but there was no significant effect of increasing the amount of chlorine added. However, a removal efficiency of greater than 80% was noted when ozone was injected at concentrations greater than 2 mg/L. Also, it was found that on addition of polyamine, a removal efficiency of 80% or more could be achieved. As a result of the analysis of field operation data from the water treatment plants G and B, it was found that at water treatment plant G, the filter run time decreased to 10 hours or less when only coagulant was injected, but the filter run time increased to around 40 hours when polyamine (3 mg/L) was also injected. The Synedra population in the raw water subsequently increased to 2,340 cells/mL, and the filter continued running for more than 20 hours. At water treatment plant B, the average Synedra removal efficiency was 56% when only coagulant was injected, and the filter run time decreased drastically with the increasing population of Synedra in the raw water. However, the removal efficiency of Synedra reached 79% when polyamine was injected together with the coagulant, 90% when ozone was also injected, and 95% when polyamine and ozone were injected together and the filter continued running for over 50 hours. The filter run time was maintained at 60 hours when a Synedra population of 6,890 cells/mL flowed into the Paldang water source, but the filter run time with Synedra at 1,960 cells/mL decreased rapidly from 65 hours to 35 hours when the ratio of the size of the individual Synedra reaching 250 ㎛ or more, increased from 38% to 94%. Therefore, the size of the Synedra is considered to be a factor that significantly influences filter clogging, as well as the size of the Synedra population.

Skeletonization Methods for Complex Water Distribution Network (상수관망 시스템의 골격화 기법 평가)

  • Choi, Jeong Wook;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.845-855
    • /
    • 2015
  • Studies of optimizing pump operation in water distribution networks (WDN) are receiving spotlight in recent days. However, the water networks are quite complex including thousands of or even tens of thousands of nodes and pipes, thus simulation time is an issue. In some cases, implementing a computer model for pump operation decisions is restrictive due to intensive computation time. To that end, it is necessary to reduce the simulation time of water networks by simplifying the network layout. In this study, WDN skeletonization approaches were suggested and applied to a real water transmission network in South Korea. In skeletonizing the original network, it was constrained to match the water pressure and water age in the same junction locations to maintain the hydraulic and water quality characteristics in the skeletonized network. Using the skeletonization approaches suggested in this study, it is expected to reduce the simulation time of WDN and apply for developing a computer module of WDN real-time optimal operation.

Flood prediction in the Namgang Dam basin using a long short-term memory (LSTM) algorithm

  • Lee, Seungsoo;An, Hyunuk;Hur, Youngteck;Kim, Yeonsu;Byun, Jisun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.471-483
    • /
    • 2020
  • Flood prediction is an important issue to prevent damages by flood inundation caused by increasing high-intensity rainfall with climate change. In recent years, machine learning algorithms have been receiving attention in many scientific fields including hydrology, water resources, natural hazards, etc. The performance of a machine learning algorithm was investigated to predict the water elevation of a river in this study. The aim of this study was to develop a new method for securing a large enough lead time for flood defenses by predicting river water elevation using the a long- short-term memory (LSTM) technique. The water elevation data at the Oisong gauging station were selected to evaluate its applicability. The test data were the water elevation data measured by K-water from 15 February 2013 to 26 August 2018, approximately 5 years 6 months, at 1 hour intervals. To investigate the predictability of the data in terms of the data characteristics and the lead time of the prediction data, the data were divided into the same interval data (group-A) and time average data (group-B) set. Next, the predictability was evaluated by constructing a total of 36 cases. Based on the results, group-A had a more stable water elevation prediction skill compared to group-B with a lead time from 1 to 6 h. Thus, the LSTM technique using only measured water elevation data can be used for securing the appropriate lead time for flood defense in a river.

Simulation for Chlorine Residuals and Effect of Rechlorination in Drinking Water Distribution Systems of Suwon City (수원시 상수관망에서 잔류염소와 재염소주입의 효과 예측)

  • Kim, Kyung-Rok;Lee, Byong-Hi;Yoo, Ho Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.108-116
    • /
    • 2000
  • Chlorine is widely used as a disinfectant in drinking-water systems throughout the world. Chlorine residual was used as an indicator for prediction of water quality in water distribution systems. The variation of chlorine residual in drinking water distribution systems of Suwon city was simulated using EPANET. EPANET is a computerized simulation model which predicts the dynamic hydraulic and water quality behavior within a water distribution system operating over an extended time period. Sampling and analysis were performed to calibrated the computer model in 1999 (Aug. Summer). Water quality variables used in simulations are temperature, roughness coefficient, pipe diameter, pipe length, water demand, velocity and so on. Extended water residence time affected water quality due to the extended reaction time in some areas. All area showed the higher concentration of chlorine residual than 0.2mg/l(standard). So it can be concluded that any area in Suwon city is not in biological regrowth problem. Rechlorination turned out to be an useful method for uniform concentration of free chlorine residual in distribution system. The cost of disinfectant could be saved remarkably by cutting down the initial chlorine concentration to the level which guarantees minimum concentration (0.2mg/l) throughout the distribution system.

  • PDF

Optimization for Hot water Extraction Condition of Liriope spicata Tuber Using Response Surface Methodology (반응표면분석법에 의한 맥문동 열수추출 조건의 최적화)

  • 김순동;구연수;이인자;박인경;윤광섭
    • Food Science and Preservation
    • /
    • v.8 no.2
    • /
    • pp.157-163
    • /
    • 2001
  • Optimal conditions for hot water extraction of Liriope spicata tuber were investigated with changes in solvent ratio(2∼6 fold) and heating time(1∼5 hr) by response surface methodology. The content of extractable solids increased with an increased in solvent ratio, and the highest content showed at heating time of 3 hr. The content of total steroid saponin increased with a decrease in solvent ratio, and increased with an increase in heating time at increasing the solvent ratio. The content of non-reducing sugar containing oligosaccharides at a lower solvent ratio didn’t show changes depending on heating time, while that at a higher ration decreased with an increase in heating time. Optimal extraction conditions using hot water as the limited conditions of 15∼18% extractable solids, 1.5∼2.0% total steroid saponin, 6∼8% reducing sugar, 6∼7% non-reducing sugar and 13∼15 brix were 3 hrs of heating time and 4 fold of solvent ratio.

  • PDF

Active Effect of Antivoagulant Effects in chaenomelis Fructus Water Extract (모과 추출물의 항응혈 활성)

  • Yoo, Ji-Hyun;Han, Sin-Hee;Kil, Gi-Jung
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.7-11
    • /
    • 2009
  • Objectives : This research was investigated anticoagulant effect of the Chaenomelis Fructus extract. Methods : To examine an active effect of anticoagulation in Chaenomelis Fructus extract, the study measured Prothrombin time(PT) and activated partial thromboplastin time (APTT) of human plasma in vitro and measured bleeding time and arterio-venous shunt model in rats in vivo. Results : Bleeding time of Chaenomelis Fructus extract in vivo had a significant increase as about 1.6 times and thrombus weight of Chaenomelis Fructus extract had a significant reduction of thrombus weight as 50%. Chaenomelis Fructus extract represented an effect of anticoagulation by operating on extrinsic pathway factor II, V, VII, X and intrinsic pathway factor VIII, IX, X, XI, XII in the coagulation system. Conclusions : Considering the above mentioned results, it is judged that a Chaenomelis Fructus extract has a control effect of thrombus creation.

Dewatering Characteristic of Water Treatment Plant Sludges based on Detention Time (체류시간에 따른 정수장슬러지의 탈수특성)

  • Moon, Yong-taik;Kim, Byung-goon;Kim, Youn-kwon;Kim, Hong-suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.709-715
    • /
    • 2007
  • The dewaterability of a sludge can be characterized by two ways: the residual moisture content in the sludge cake after dewatering process, and the filtration of the sludge. Time to filter (TTF) represents filtration processes that are special cases of the flow through a solid matrix concept. TTF characterizes a resistance to filtration. The sludge resistance, in turn, can be subdivided into resistances associated with the solid phase and the liquid phase to evaluate the effect of each of the two phases on sludge dewaterability. In order to determine the dewatering characteristics of the water sludge samples, TTF and zeta potential were measured. For these studies cationic polymer was chosen for water sludge dewatering experiments. The zeta potential of thickener sludges neared from minus values to zero values till 4 days after sampling. The dewaterability of thickener sludges using cationic polymer was deteriorated according to the increase of detention time. As the detention time was increased from 4 to 10 days, the optimal dose of the polymer was increased from 4 to 8mg/L. Therefore, the optimal detention time plays an important part for the dewaterability of a sludge.