• Title/Summary/Keyword: Water temperature stress

Search Result 652, Processing Time 0.034 seconds

Study on the Genetic Characteristics of Waterlogging Tolerant Pepper (Capsicum annuum L.) for Breeding Tolerant Varieties against Flooding Stress (내습성 고추 품종 육성을 위한 선발계통의 유전적 특성 구명)

  • Yang, Eun Young;Chae, Soo-Young;Hong, Jong-Pil;Lee, Hye-Eun;Park, Eun Joon;Moon, Ji-hye;Park, Tae-Sung;Roh, Mi-Young;Kim, Ok Rye;Kim, Sang Gyu;Kim, Dae Young;Lee, Sun Yi;Cho, Myeong Cheoul
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1111-1120
    • /
    • 2017
  • This study was conducted to select pepper lines that were tolerant to excessive water injury among the pepper germplasm and investigate the genetic characteristics of those lines to contribute to the breeding of pepper cultivars with stable productivity in abnormal weather. Each of the tolerant and susceptible lines went through immersion treatment, and differentially expressed genes between them were analyzed. The tolerant line showed increased expression of the CA02g26670 gene, which is involved in the CONSTANS protein pathway and regulation of flowering by day length, but it exhibited decreased expressions of CA01g21450, CA01g22480, CA01g34470, CA02g00370 and CA02g00380. The susceptible line showed increased gene expressions of CA02g09720, CA02g21290, CA03g16520, CA07g 02110, and CA12g17910, which are involved in the inhibition of proteolytic enzyme activity, DNA binding, inhibition of cell wall-degrading enzyme, and inhibition of nodulin, respectively. Meanwhile the expressions of CA02g02820, CA03g21390, CA06g17700 and CA07g18230 decreased in the susceptible line, in relation to calcium-ion binding, high temperature, synthesis of phosphocholine and cold stress, respectively. The expressions of genes related to apoptosis and peroxidase increased, while that of CA02g16990, which functions as a nucleoside transporter, decreased in both the tolerant and susceptible lines. Based on the different gene expressions between the tolerant and susceptible lines, further studies are needed on breeding abiotic stress-tolerant lines.

Varietal Responses of Soybean Germination and Seedling Elongation to Temperature and Polyethylene Glycol Solution (온도와 PEG에 대한 대두품종의 발아 및 묘신장 반응)

  • Seong, Rak-Chun;Chung, Hae-Joon;Hong, Eun-Hi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.31-37
    • /
    • 1988
  • Germination and seedling elongation of soybeans [Glycine max. (L.) Merr., cults. Bangsakong, Hill, Paldalkong, Danyupkong, Baegwun-kong. Kwangkyokong, Changyupkong and Hwangkeumkong] were measured at two temperatures (15 and 30$^{\circ}C$) and four polyethylene glycol 10,000 (PEG) solutions (0, 20, 30 and 35g/100g-H$_2$O). Adjustments of PEG solution were based on water potentials of 0.0, -0.5, -1.1 and -1.5 MPa at room temperature. Observations were made at 3, 6, 9 and 12 days for 15$^{\circ}C$ and 1, 2, 3 and 4 days for 30$^{\circ}C$. Fifteen seeds of each cultivar were placed on Whatman No. 1 (9cm) filter paper in plastic pertridishes, and adjusted to 15 ml of the proper PEG solution supplemented with 0.2 percent thiram using automatic syringe. The dishes were covered with cap. The seeds were germinated at a continuous temperature of 15 or 30$^{\circ}C$ under dark conditions for programmed period. Seedling moisture content and seedling length of eight soybean cultivars decreased as PEG concentration increased both at 15 and 30$^{\circ}C$. Cultivar differences in seedling moisture content and seedling length were found among eight soybean cultivars at temperatures of 15 and 30$^{\circ}C$. Larger sized cultivar absorbed more moisture than samller sized cultivar. However, reverse results were obtained on the seedling moisture content of each of eight soybean cultivars. Cultiver Hill and Paldalkong showed greater seedling length than the other six cultivars from 20 to 30g/100g water of PEG concentrations both at 15 and 30$^{\circ}C$. The results of this study indicated that germination test of soybean seeds in aqueous solutions of PEG has potential for screening soybean cultivars for improved emergence during moisture stress.

  • PDF

Effects of Sprinkler and Fan Cooling System in Loose Barn on the Physiological Parameter and Milk Productivity in Holstein Cows During Summer (개방식우사내 Fan과 Sprinkler설치가 착유우의 생리적 변화 및 유생산성에 미치는 영향)

  • 정태영;이현민;김종민;김동일;이연섭;이인형
    • Journal of Animal Environmental Science
    • /
    • v.2 no.1
    • /
    • pp.41-52
    • /
    • 1996
  • This experiment was carried out to study the effect of sprinkler and fan cooling system on the physiological parameter, milk production and milk composition for Holstein cows in hot, humid climates. Thirty cows were assigned to one of two sections of open-sided loose barn. Water nozzles of sprinkler system were spaced in line at 1.2m intervals. Forced air was provided by 85cm diameter fans at rate of 3.4㎥/sec. The results obtained from these experiments are as follows: 1. There was no significant difference in meteorological data between control and fan + sprinkler cooling system(treatment group). 2. Skin temperature and rectal temperature of the treatment group were significantly lower than those of the control group (32.96 : 39.53$^{\circ}C$ vs 34.02 : 41.21$^{\circ}C$ respectively) (P<0.05). 3. Serum cortisol concentration of the treatment group(0.90$\mu\textrm{g}$/dL) was lower than that of control group(1.44$\mu\textrm{g}$/dL)(P<0.05). 4. Milk production of cows cooled with a sprinkler and fan cooling system was significantly higher than that of no cooling system (P<0.0l). 5. Lactose, protein and solid-not-fat content of milk were not changed by the treatments. Milk fat content of the control(3.23%) was low compared with the treatment group(3.38%). Somatic cell count was reduced by 26.63% in the treatment. The results indicate that a sprinkler and fan cooling systems can provide an effective means to relieve heat stress and enhance productivity of lactating Holstein cows during hot and humid summer season.

  • PDF

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Influence of Short-term Application of Abscisic Acid in Nutrient Solution on Growth and Drought Tolerance of Tomato Seedlings (토마토 육묘과정에서 단기간 ABA처리가 묘소질과 건조내성에 미치는 영향)

  • Kim, Il-Seop;Vu, Ngoc-Thang;Vo, Hoang-Tung;Choi, Ki-Young;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • This study was conducted to evaluate influence of short-term application of abscisic acid (ABA) in nutrient solution on growth and drought tolerance of tomato seedlings. The treatments included four ABA concentrations (0.5, 1, 2, $3mg{\cdot}L^{-1}$) and control (non-treatment) were applied to the nutrient solution in a hydroponic system. On the $5^{th}$ and $10^{th}$ day after growing in the nutrient solution containing ABA, seedlings were transferred to -5 bars of PEG-8000 in a growth chamber to induce water stress. Except for stem diameter and fresh and dry weight of root, there were no statistical differences in other growth parameters among control, 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments. Seedlings growths were strongly inhibited in nutrient solution containing 2 and $3mg{\cdot}L^{-1}$ of ABA. The root growth such as fresh and dry weigh of root, total root surface area, and average root diameter was slightly enhanced in $1mg{\cdot}L^{-1}$ of ABA treatment. The elevation of ABA concentrations in nutrient solution resulted in the decrease in transpiration rate and increase in stomatal diffusive resistance and leaf temperature of tomato seedlings. The initiations of seedling wilting after treating in -5 bars of PEG were delayed from 10 hrs in control to 30 hrs in ABA applied treatments. Additionally, the high percentages of recovered seedlings were observed in 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments after re-irrigation. Therefore, short-term application of $1mg{\cdot}L^{-1}$ of ABA in the nutrient solution stimulated the root growth and drought tolerance of tomato seedlings by delaying the start time of wilting point and enhancing the recovery after re-irrigation.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Review Forty-year Studies of Korean fir(Abies koreana Wilson) (국내 구상나무(Abies koreana Wilson) 연구 40년: 검토 및 제언)

  • Koo, Kyung Ah;Kim, Da-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.5
    • /
    • pp.358-371
    • /
    • 2020
  • As climate change is expected to lead to a severe reduction of biodiversity, studies to investigate the reasons for habitat loss, growth decline, and death of Korean fir (Abies koreana Wilson), endangered alpine/subalpine species in Korea, have been conducted for years but found no clear answer yet. This study reviewed previous studies on Korean fir published in the journals in the past 40 years, 1980 through 2020, into 10-year units, examined the study trend by period, region, and subject with a focus on ecological studies, and analyzed the study results. The ecological studies were categorized into evolutionary ecology, physiological ecology, population ecology, and landscape ecology. Based on the results, we suggested the required research fields in the future. We found a total of 73 papers published in the past 40 years and 48 (65.8%) of them published in the past 10 years. In terms of region, Mt. Halla accounted for the most as 41 papers were on it. In terms of ecological subjects, the physiological ecology accounted for the most with 38, and the evolutionary ecology accounted for the least with 10. The review of the study results showed that many studies identified water stress caused by the water resource imbalance due to temperature increase and spring precipitation reduction following climate change as the main reason for the decline and habitat loss of Korean fir. However, recent studies suggested other factors, such as soil environment, disturbing organisms, and climatic events. The cause of the decline and death of the Korean fir not yet being clearly identified is that most of the studies dealt with the basic content, were carried out intermittently, and were concentrated in some regions. Therefore, we need long-term studies with advanced technology in each study subject at a local scale to find the cause of Korean fir decline and present sustainable management and conservation. Moreover, it is necessary to extend our study subjects to ecosystem ecology and systems ecology to integrate the results from various study subjects for a comprehensive understanding of the reason for Korean fir declines. The results of comprehensive studies could provide clearer answers for Korean fir's declines and the alternatives of conservation management and practices.

Physiological Responses to Drought Stress of Seven Evergreen Hardwood Species (상록활엽수 7수종의 건조스트레스에 대한 생리적 반응)

  • Jin, Eon-Ju;Cho, Min-Gi;Bae, Eun-Ji;Park, Junhyeong;Lee, Kwang-Soo;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • This research aims to analyze and compare the drought resistance of 7 species of landscape trees commonly grown in Korea. The 7 species are: Camellia japonica, Rhaphiolepis indica, Quercus glauca, Machilus thunbergii, Daphniphyllum macropodum, Dendropanax morbifera and Cinnamomum camphora. In order to analyze their drought resistance, the samples were left without irrigation for 30 days (05/09/2016 ~ 05/10/2016), during which period their respective drought resistor, relative water content, electrolyte elution figures and proline content were measured. As the non-irrigation proceeded, C. camphora was the first to wither, followed by D. morbifera, then D. macropodum, then M. thunbergii, then Q. glauca, then R. indica then finally C. japonica. Of the 7 species, Q. glauca, C. japonica and R. indica can be considered highly drought resistant, since they survived for longer than 3 weeks without irrigation. Relative water content (RWC) plummeted dramatically after the first 15 days of non-irrigation. Whereas RWC readings of C. camphora, D. morbifera, D. macropodum and M. tunbergii dropped by 40% or more, the other 4 species reported a relatively low rate of decrease at 20% or lower. The Camellia japonica, the R. indica and Q. glauca, which were the species with relatively high drought resistance, showed low proline content and electrolyte elution figures, whereas those of C. camphora, D. macropodum, D. morbifera and M. tunbergii were higher. Analysis through the nonlinear regression analysis logistic model showed that non-irrigation proved fatal for the 7 sample species in a range of 22.7 to 37.6 days. The C. japonica, R. indica, Q. glauca and M. tunbergii demonstrated a high drought resistance of 30 days or longer, whereas C. camphora, D. morbifera and D. macropodum had a low resistance of 25 days or less to drought from lack of water. In conclusion, out of the 7 species of broad-leaved evergreen trees tested, C. japonica, R. indica and Q. glauca seem to be suitable for use as landscape trees, owing to their high drought resistance.

Analysis on On-line Q&A Cases regarding Landscape Trees Management - Focused on Online Consultation Board at Tree Diagnostic Center - (조경수 관리에 관한 온라인 질의응답 사례 분석 - 수목진단센터 온라인 상담 사례를 대상으로 -)

  • Lim, Byoung-Eul;Lee, Sae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • The persons in charge of management request diagnosis and prescription to tree hospitals in order to get consultation about the problems like blight that occur in landscape tree management. This study aims to analyze what the main problems and questions raised by landscape gardeners are and those concerned in landscape tree management. This is done by investigating landscape tree-related questions and answers uploaded on the online consultation boards of the plant diagnostic centers approved in Korea including the Seoul National University Plant Clinic, the Chungbuk National University Plant Hospital, and the Kangwon Diagnostic Center. As a result, those concerned in landscape occupied the most as 81.4% among the questioners. However, only 11.5% did explain the plant management history or surrounding environment, which is essential for landscape tree diagnosis when asking questions. This shows that those concerned in landscape lack basic knowledge or interest about plant diagnosis. Among 263 questions about landscape trees, questions about physiological damage included 94 cases that were the most taking up 35.8%. Moreover, the next were damage by insects and damage by disease in order. It is thought that due to the characteristics of physiological problems that occur by various sorts of stress and with no signs, they tend to request diagnosis or prescription the most. The most frequent reasons for physiological damage are water stress and temperature stress. About damage by disease, there exist many types of diseases, and there are many complex damages accompanied by physiological causes. About damage by insects, the most common include damage by moths. In consideration of this result, universities or technician training centers should provide education for landscape tree management so that landscape technicians and students can acquire essential knowledge and information about landscape tree management and increase their interest in it. In particular, it is necessary to provide profound learning opportunities for plant physiology, and the technicians should make efforts themselves. In addition, it is needed to build organizations to which they can ask technical questions about landscape planting and management in order to understand landscape industry in general and the actual status of landscape planting technique and the actual field. Moreover, to elevate systemicity and expertise in the area of landscape tree management not yet equipped with the foundation, it is needed to cultivate the technicians intensively and conduct research by those concerned both in academic and industrial circles.

Phase Behavior Study of Fatty Acid Potassium Cream Soaps (지방산 칼륨 Cream Soaps 의 상거동 연구)

  • Noh, Min Joo;Yeo, Hye Lim;Lee, Ji Hyun;Park, Myeong Sam;Lee, Jun Bae;Yoon, Moung Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • The potassium cream soap with fatty acid called cleaning foam has a crystal gel structure, and unlike an emulsion system, it is weak to shear stress and shows characteristics that are easily separated under high temperature storage conditions. The crystal gel structure of cleansing foams is significantly influenced by the nature and proportion of fatty acids, degree of neutralization, and the nature and proportion of polyols. In order to investigate the effect of these parameters on the crystal gel structure, a ternary system consisting of water/KOH/fatty acid was investigated in this study. The investigation of differential scanning calorimeter (DSC) revealed that the eutectic point was found at the ratio of myristic acid (MA) : stearic acid (SA) = 3 : 1 and ternary systems were the most stable at the eutectic point. However, the increase in fatty acid content had little effect on stability. On the basis of viscosity and polarized optical microscopy (POM) measurements, the optimum degree of neutralization was found to be about 75%. The system was stable when the melting point (Tm) of the ternary system was higher than the storage temperature and the crystal phase was transferred to lamellar gel phase, but the increase in fatty acid content had little effect on stability. The addition of polyols to the ternary system played an important role in changing the Tm and causing phase transition. The structure of the cleansing foams were confirmed through cryogenic scanning electron microscope (Cryo-SEM), small and wide angle X-ray scattering (SAXS and WAXS) analysis. Since butylene glycol (BG), propylene glycol (PG), and dipropylene glycol (DPG) lowered the Tm and hindered the lamellar gel formation, they were unsuitable for the formation of stable cleansing foam. In contrast, glycerin, PEG-400, and sorbitol increased the Tm, and facilitated the formation of lamellar gel phase, which led to a stable ternary system. Glycerin was found to be the most optimal agent to prepare a cleansing foam with enhanced stability.