• 제목/요약/키워드: Water temperature

검색결과 14,595건 처리시간 0.05초

천수만 수온의 시공간적 변동 (Spatiotemporal Fluctuation of Water Temperature in Cheonsu Bay, Yellow Sea)

  • 추효상
    • 한국수산과학회지
    • /
    • 제54권1호
    • /
    • pp.90-100
    • /
    • 2021
  • In the north and northeast of Cheonsu Bay, short-term fluctuations of surface water temperature are large owing to shallow water depth, weak current, and freshwater runoff. However, in the south of the bay, water temperature fluctuations are small owing to the inflow of offshore water by tidal currents. The water temperature in the north of the bay is higher in spring and summer than in the south of the bay, but lower in autumn and winter. During spring season, the fluctuation in the northern surface water temperature is the highest. The temperature fluctuations owing to tides are in phase with the tide in autumn and winter, and in the reverse phase with the tide in spring and summer. The dominant periods of water temperature fluctuations are half a day, daily, 15 days, and 1 month owing to the tide and 7 to 10 days, which are estimated based on atmospheric factors. Half a day and daily water temperature fluctuations are also highly correlated with air temperature and wind fluctuations. The sea area where water temperature fluctuations are highly correlated is divided into the north and south of the bay. The fluctuation phase is faster in the north of the bay than in the south or in the center.

신경망모형을 이용한 새만금호 수온 예측 (The Prediction of Water Temperature at Saemangeum Lake by Neural Network)

  • 오남선;정신택
    • 한국해안·해양공학회논문집
    • /
    • 제27권1호
    • /
    • pp.56-62
    • /
    • 2015
  • 지구 온난화의 영향으로 해수면과 기온이 상승하고, 이의 직접적인 영향으로 수온이 증가하고 있다. 지구 온난화가 하천의 수질과 생태 환경에 미치는 영향을 추정하기 위해서는 수온에 대해 이해하고 수온의 변화를 예측할 필요가 있다. 이 연구에서는 수온의 변화를 예측하기 위하여 기온과 수온자료를 입력자료로 하여 수온의 예측을 실시하였다. 2012년에서 2014년까지 환경부의 수질환경관측소에서 관측한 새만금호내의 신시, 가력, 만경, 동진 4개 지점의 수온자료와 기상청에서 같은 기간에 관측한 부안의 자동관측 기온 자료를 활용하였다. 신경망이론을 이용하여 최고 및 최저 수온을 예측한 결과 4개 지점의 모든 결과에서 아주 높은 상관계수를 가지고 있다.

물-물 수온차 히트펌프 시스템의 원수온도에 따른 성능 특성 분석 (Analysis on Cooling and Heating Performance of Water-to-Water Heat Pump System for Water Source Temperature)

  • 박태진;조용;박진훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • The research assesses the performance of the water-to-water heat pump system installed in Cheongju water treatment plant for cooling and heating ventilation. In summer season monthly averaged COP is ranged from 3.85 to 4.56 according to the water source temperature, and the performance is increased as the raw water temperature is dropped. While, heating performance is increased for the high temperature water source, and the monthly averaged COP is changed from 2.92 to 3.82. The correlation of the water source temperature and the heat pump performance shows a linear tendency by the simple regression of average data. In heating, the COP of heat pump system linearly rises according to the water source temperature. In comparison, the COP in cooling linearly reduces as the raw water temperature is raised. The goodness of fit at the simple regression shows the coefficient of determination 82% in cooling, 46% in heating. The electric cost of water-to-water heat pump is reduced by 40% compared to that of air source heat pump.

  • PDF

콘덴싱가스보일러 제어를 위한 공급수알고리즘 (The Supply Water Algorithm for a Condensing Gas Boiler Control)

  • 한도영;유병강
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.441-448
    • /
    • 2011
  • The energy consumption of a condensing gas boiler may be greatly reduced by the effective operation of the unit. In this study, the supply water algorithm for a condensing gas boiler control was developed by using the fuzzy logic. This includes the supply water set temperature algorithm, and the control algorithms of a gas valve, a blower and a pump. For the set temperature algorithm, the outside air temperature and the return water temperature were used as input variables. The supply water temperature difference and its slope were used as input variables of the gas valve and blower control algorithm. And the supply water temperature and the return water temperature were used as input variables of the pump control algorithm. In order to analyse performances of these algorithms, the dynamic model of a condensing gas boiler was used. The initial start-up test, the supply water set temperature change test, the outside air temperature change test, and the return water temperature change test were performed. Simulation results showed that algorithms developed in this study may be practically applied for the effective control of a condensing gas boiler.

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

Relationship between Winter Water Temperature in the Eastern Part of the Yellow Sea and Siberian High Pressure and Arctic Oscillation

  • Jung, Hae Kun;Lee, Chung Il
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1425-1433
    • /
    • 2012
  • Water temperature in the eastern part of the Yellow Sea (EYS) during winter (JFM) and summer (JJA) from 1964 to 2009 and Siberian High Pressure Index (SHI) and Arctic Oscillation index (AOI) during winter (JFM) from 1950 to 2011 were used to analyze long-term variation in oceanic and atmospheric conditions and relationship between winter and summer bottom water temperature. Winter water temperature at 0, 30 and 50 m had fluctuated highly till the late of 1980s, but after this it was relatively stable. The long-term trends in winter water temperature at both depths were separated with cold regime and warm regime on the basis of the late 1980s. Winter water temperature at 0m and 50m during warm regime increased about $0.9^{\circ}C$ and $1.1^{\circ}C$ respectively compared to that during cold regime. Fluctuation pattern in winter water temperature matched well with SHI and AOI The SHI had negative correlation with water temperature at 0 m (r=-0.51) and 50 m (r=-0.58). On the other hand, the AO had positive correlation with Winter water temperature at 0 m (r=0.34) and 50 m (r=0.45). Cyclic fluctuation pattern of winter water temperature had a relation with SHI and AO, in particular two to six-year periodicity were dominant from the early of the 1970s to the early of the 1980s. Before the late of 1980s, change pattern in winter water temperature at 0 and 50 m was similar with that in the bottom water temperature during summer, but after this, relationship between two variables was low.

기온 변화에 따른 팔당호 수온 영향 및 이력현상 (Effect of Air Temperature Changes on Water Temperature and Hysteresis Phenomenon in Lake Paldang)

  • 유순주;임종권;이보미
    • 환경영향평가
    • /
    • 제29권5호
    • /
    • pp.323-337
    • /
    • 2020
  • 국내 최대 상수원인 팔당호를 대상으로 기온과 수온의 변화를 살펴보고 장기간 기온과 수온의 연속 자료를 활용하여 이력 현상을 살펴보았다. 계절 Mann-Kendall을 적용한 팔당호 인근 양평의 기온 변화 추세는 지난 47년간(1973~2019) 증가(0.048 ℃/yr)에 비하여 최근 27년간(1993~2019) 기온의 증가(0.060 ℃/yr)가 컸다. 팔당호와 유입 하천에서 수온은 기온과의 상관성이 높으나(R > 0.9, p < 0.005) 호소인 팔당댐앞 지점에서의 수온은 하천 수온 상승에 비하여 느리고 기온 하강기에 들어서 수온이 서서히 감소하였고 수심 평균 수온도 상승기와 하강기 모두 호소 표층보다 변화가 더디게 나타났다. 이는 호소가 하천보다 수체 규모 면에서 크고 체류시간이 길기 때문에 열에너지를 흡수하고 감소하는데 시간이 걸리는 수온의 이력 현상이 크게 작용하는 것으로 판단된다.

낙동강유역에서 위성영상을 이용한 보 건설 전후 수온의 계절변화 (Seasonal Variation of Water Temperature Before and After Weir Construction Using Satellite Image in the Nakdong River)

  • 김상우;김해동;임진욱;안지숙
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1417-1430
    • /
    • 2015
  • In this study we were to explore the seasonal variation of water temperature distributions before and after weir construction at Gumi, Chilgok, Gangjung(Goryung), Dalsung in the Nakdong River using Landsat satellite images. Relationship between in-situ water temperature and radiance values of Landsat-5, 7, 8 satellite images showed high correlation. Seasonal variation of water temperature in Nakdong River showed that the fluctuation ranges of water temperature before weir construction were larger than those after weir construction. This indicated that the variation of water temperature is due to the difference of heat storage volume by weir construction and dredging work. In particular, the water temperature after weirs construction in autumn was 4-8 times lower than that before weirs construction. Water temperature after weir construction decreased in spring and summer at the downstream of Gumi weir and Gangjung(Goryung) weir, and the upstream of Dalsung weir. In autumn and winter, the water temperature after weir construction increased in the upstream and downstream of the whole weirs except upstream of Gumi weir. Relationship between water temperature and meteorological elements (air temperature, wind speed, sunshine, radiation) showed high correlation of above 94% in air temperature, and then radiation was high correlation before and after 65%.

활성오니공법에 있어서 수온이 처리효율에 미치는 영향에 관한 분석 -청계천 하수종말처리장에 대하여- (Analysis of Temperature Effect on Activated Sludge Process at Cheong-Gye Cheon Sewage Treatment Plant)

  • 이은경
    • 한국환경보건학회지
    • /
    • 제7권1호
    • /
    • pp.9-20
    • /
    • 1981
  • This study was performed to determine the correlationship between temperature and overall removals of BOD, SS and to demonstrate the effect of temperature on treatment performance. These data for a period from February 1, 1977 to January 31, 1980 were obtained from the Cheong-Gye Cheon Sewage Treatment plant. The results of correlation and stepwise multiple regression analysis were as follows. 1) Secondary effluent BOD and SS showed negative correlationship with water temperature, with correlation coefficient of -0.1710, and -0.1654 respectively. 2) Correlation coefficient of BOD, SS removal rate and water temperature were 0.1823 and 0.0429 respectively. 3) Regresion equation for estimate of BOD removal rate was as follows $\widehat{Y}_1$ (BOD removal rate)=63.9994+0.5442X(water temperature). And BOD removal rate showed non significant change according to the water temperature. 4) Regression equation for estimate of SS removal rate was as follows $\widehat{Y}_2$ (SS removal rate)=61.6881+0.1514X(Water temperature). And SS removal rate showed non significant change according to the water temperature. 5) According to the Stepwise Multiple Regression analysis, water temperature ranked second order in the BOD removal rate estimation and the equation was as follows $\widehat{Y}_1$ (BOD removal rate)=69.7398+0.2665 $X_1$ (Primary effluent BOD)+0.3562 $X_2$ (Water temperature)-0.0122 $X_3(Flow)+4413.271X_4$ (Organic Loading).

  • PDF

외기온도와 환수온도를 이용한 보일러의 공급수온도설정 (Boiler Supply Water Temperature Setting by Outside Air Temperature and Return Water Temperature)

  • 한도영;유병강
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.161-166
    • /
    • 2009
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a boiler unit, the effective operation is necessary. In this study, the supply water temperature algorithm of a condensing gas boiler was developed. This includes the setpoint algorithm and the control algorithm of the supply water temperature. The setpoint algorithm was developed by the fuzzy logic and the control algorithm was developed by the proportional integral algorithm. In order to analyse the performance of the supply water temperature algorithm, the dynamic model of a condensing gas boiler system was used. Simulation results showed that the supply water temperature algorithm developed for this study may be practically applied for the control of the condensing gas boiler.

  • PDF