• Title/Summary/Keyword: Water supply safety

Search Result 250, Processing Time 0.026 seconds

Evaluation of Water Supply Reliability in Agricultural Reservoirs Using Water Balance Analysis (물수지 기반 농업용 저수지 내한능력 및 이수안전도 평가)

  • Yang, Mi-Hye;Nam, Won-Ho;Shin, Ji-Hyeon;Yoon, Dong-Hyun;Yang, Hee-Chung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.5
    • /
    • pp.29-40
    • /
    • 2024
  • Most agricultural reservoirs were built between the 1940s and 1970s. Therefore, it is necessary to evaluate the current water supply safety, considering changes in water capacity, the water management, and environment in relation to the passage of time.. The design frequency of drought, the number of years areservoir needs to be able to withstand a drought phenomenon, foragricultural water resources in Korea is the 10-year drought. As the water supply system and water supply patterns change, it is necessary to establish a concept of water supply reliability, which refers to the stability of water supply. This study evaluated the water supply reliability of agricultural reservoirs based on the designed frequency. The previously designed frequency and water balance analysis were used to calculate and analyze reservoir storage capacity, water supply turnover, water supply amount, water supply potential, water utilization safety, and water supply reliability. As a result, Yongmyeon Reservoir was found to be stable in terms of water supply reliability, whereas Seongho and Yongpung Reservoirs were found to be unstable using all methods. In particular, when converting the water utilization safety and the water supply reliability to the frequency of drought, Seongho and Yongpung Reservoir were in the lowest class, with a frequency of drought less than four years. Thus, we recommend that the consideration of water supply reliability be included in the preparation of adaptive measures and water supply strategies as changes in environmental conditions continue to develop.

A Study on the Development and Applicative Estimation of Safety Evaluation Model for Water Supply Pipelines using Quantification Theory Type II (수량화II류이론을 활용한 상수도관로의 안전성 평가 모델 개발 및 적용성 평가 연구)

  • Kim, Kibum;Shin, Hwisu;Seo, Jeewon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • Owing to time and cost constraints, new methods that would make it possible to evaluate the safety of the water supply pipeline in a less time- and cost-consuming manner are urgently needed. In response to this exigency, the present study developed a new statistical model to assess the safety of the water supply pipeline using the quantification theory type II. In this research, the safety of the water supply pipeline was defined as 'a possibility of the pipeline failure'. Quantification analysis was conducted on the qualitative data, such as pipe material, coating, and buried condition. The results of analyses demonstrate that the hit ratio of the quantification function amounted to 77.8% of hit ratio, which was a fair value. In addition, all variables that were included in the quantification function were logically valid and demonstrated statistically significant. According to the results derived from the application of the safety evaluation model, the coefficient of determination ($R^2$) between K-region's water supply pipeline safety and the safety inspection amounted to 0.80. Therefore, these findings provide meaningful insight for the measured values in real applications of the model. The results of the present study can also be meaningfully used in further research on safety evaluation of pipelines, establishing of renewal prioritization, as well as asset management planning of the water supply infrastructure.

Introduction of Water Safety Plan in Korea (물안전계획(Water Safety Plan)의 국내 도입방안)

  • Kim, Jin-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.535-545
    • /
    • 2012
  • Recently, drinking water quality has significantly improved with the progress of water treatment technologies, however, customer's trust on tap water is still relatively low. Low trust on water quality is mainly due to vague anxiety. Therefore, to improve customer's trust on drinking water quality new strategy such as water safety plan(WSP) which recommended by WHO and IWA should be introduced. WSP can be defined as an approach which uses comprehensive risk assessment and risk management approach that encompasses all steps in water supply from catchment to consumer to ensure the safety of a drinking water supply. In this study, cases on WSP introduction in other countries as well as strategy for the introduction of WSP in Korea were investigated. In addition, recommendations on the improvement of the current water contamination response manual was suggested based on the analysis of the existing manual at a full scale water treatment plant.

A study on the application of water safety plans for the hazard risk management of tap water (수돗물 위해요소 리스크 관리를 위한 물안전계획 적용 연구)

  • Kim, Jinkeun;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.259-268
    • /
    • 2019
  • One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant($Q=25,000m^3/d$) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase($Ca(OCl)_2$) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities.

Assessment of Irrigation Efficiency and Water Supply Vulnerability Using SWMM (SWMM 모형을 활용한 평야부 관개효율 및 용수공급 취약성 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Bang, Na-Kyoung;Kim, Han-Joong;An, Hyun-Uk;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.73-83
    • /
    • 2020
  • Agricultural drought is a natural phenomenon that is difficult to observe and quantitatively express, and agricultural water use is high and usage patterns are diverse, so even if there is a lack of rainfall. The frequency and severity of agricultural drought are increased during the irrigation period where the demand for agricultural water is generated, and reasonable and efficient management of agricultural water for stable water supply is required. As one method to solve the water shortage of agricultural water in an unstructured method, it is necessary to analyze the appropriate supply amount and supply method through simulation from the intake works to the canals organization and paddy field. In this study, irrigation efficiency was analyzed for irrigation systems from April to September over the past three years from the Musu Reservoir located in Jincheon-gun, Chungcheongbuk-do and Pungjeon Reservoir located in Seosan-si, Chungcheongnam-do. SWMM (Storm Water Management Model) was used to collect agricultural water, and irrigation efficiency analysis was conducted using adequacy indicators, and water supply vulnerability. The results of the agricultural water distribution simulation, irrigation efficiency and water supply vulnerability assessment are thought to help the overall understanding of the agricultural water supply and the efficient water management through preliminary analysis of the methods of agricultural water supply in case of drought events.

Reevaluation of Design Frequency of Drought and Water Supply Safety for Agricultural Reservoirs under Changing Climate and Farming Methods in Paddy Field (기상 및 영농방식 변화에 따른 농업용 저수지의 설계한발빈도 및 이수안전도 재평가)

  • Nam, Won-Ho;Kwon, Hyung Joong;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Past climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply and demand. Changes on rainfall and hydrologic patterns can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the changing climate and farming methods in paddy field. The purpose of this study is an evaluation method of design frequency of drought and water supply safety for agricultural reservoirs to investigate evidence of climate change occurrences at a local scale. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under changing climate and farming methods in paddy field.

The Plan of Safety for Pump Station through Hydraulic Transient Analysis & Demonstration (과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안)

  • Ra, Beyong-pil;Kim, Jin-man;Park, Jong-ho;Kim, Kyung-yup
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.199-207
    • /
    • 2004
  • Water supply facilities are recently getting larger according as domestic waterworks become multi regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment station and water supply & distribution facilities. Although pumping stations and pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. As a result of this study, a pumping station is guaranteed by the computer simulation and field test analysis. Therefore these are contributed safety operation in pumping station through adjustment of the pumping station safety plan, air valve and valve closing time.

  • PDF

The Study on the Safety Adhesion Test of Wet Surface for Waterproofing and Anti Corrosion Materials of Water Supply Facility (수처리 시설물에 적용되는 방수·방식재의 습윤면 부착 안정 성능평가방법에 대한 연구)

  • Choi, Su-Young;Kim, Dong-Bum;Park, Jin-Sang;Park, Wan-Goo;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.137-138
    • /
    • 2017
  • The Waterproofing and Anti corrosion materials applied to the water supply facility did not consider environment of water supply facility, thus defects occurred consistently on the site. In this study, it suggests safety adhesion test of wet surface and have a test for safety adhesion performance.

  • PDF

A Safety Plan for the Pumping Station by Hydraulic Transient Analysis and Demonstration (과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안)

  • Ra, Beyong-pil;Kim, Jin-min;Lee, Dong-keun;Park, Jong-ho;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.22-28
    • /
    • 2005
  • As the water supply facilities are recently getting larger, the domestic waterworks become multi-regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment plant and water supply/distribution facilities. Although the pumping stations and the pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. In this paper, the intake pumping station is guaranteed by both the computer simulation and the field test analysis. This study is contributed to the safe operation program for the pumping station in which results of the adjustment on the safety plan of the pumping station, the air valve and the valve closing time.

Evaluation and Analysis of Characteristics for Hazen-Williams C Based on Measured Data in Multi-Regional Water Supply Systems (광역상수도 실측자료를 활용한 유속계수 평가 및 특성 분석)

  • Kim, Bumjun;Choi, Myungwon;Kim, Gilho;Kim, Hungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.197-206
    • /
    • 2016
  • Although the Hazen-Williams C factors are very important in the design, operation, and maintenance of water supply pipes, sufficient studies for them have been not reported in korea, which are based on experiments or measured data. Because of this, we have estimated C factors by measurement considering constraints in time precise safety diagnosis for multi-regional water supply system were performed. In this study, we confirmed constraints and variables characteristics of Hazen-Williams equation, and collected reliable C factors data of 174 by measurement, and analyzed their characteristics. According to collected data, the average value is 115.35, which is almost equal to the value of design standard or a little higher than it in korea. Also, among the equations suggested to determine C factor in the past, the C factors calculated by Sharp and Walski equation was closest to them in this study. In addition, to analyze collected C factors, use year and pipe diameter having high correlation with them were respectively divided into there categories. Analysis results showed that C factors evidently decreases depending on increases in use year, on the other hand, size of pipe diameter is proportional to value of them. In conclusion, this research showing evaluation and characteristics for C factors based on measured data will be used as practical reference in determining C factor in multi-regional water supply systems at a later date.