• 제목/요약/키워드: Water supply capacity

검색결과 371건 처리시간 0.024초

Analysis of Drainage Efficiency of Different Type of Drainage using Computational Fluid Dynamic Method (유동해석을 통한 배수지형태에 따른 배수효율분석)

  • Cho, Jung-Yeon;Go, Sun-Ho;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제16권2호
    • /
    • pp.34-43
    • /
    • 2017
  • Large amounts of household water are required as common households change from the single-residence types of the past to group-residence types. Therefore, the management of reservoirs is urgently required to ensure the supply of clean household water to users. Important considerations for household water include the duration for which the water is stored in the reservoir, the disinfectant's dilution capacity, and the size of the reservoir to allow for the amount of water required for emergencies and firefighting. The drainage efficiency was analyzed in this study using computational fluid analysis for existing rectangular reservoirs and the newly proposed hexagonal reservoir. Thus, it was determined that the centrifugal force generated at the inlet was maintained until the outlet due to the approximately circular shape of the hexagonal reservoir. The findings of this study verified that the centrifugal force improved the flow rate by approximately 35% compared to existing rectangular reservoirs and that drainage was performed efficiently without stagnation zone.

A Study on Application of New & Renewable Energy for Environmental-friendly Planning of Rural Villages - Analysis of Solar Energy Resources - (친환경 농촌마을계획을 위한 재생에너지 활용방안 연구 - 태양에너지 자원분석 -)

  • Nam, Sang-Woon;Kim, Dae-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제50권3호
    • /
    • pp.105-112
    • /
    • 2008
  • Solar energy, which is one of renewable energy, would be the most useful resources that can be applied to making energy recycling villages without using fossil energy. This study analyzed energy potential on solar energy considering weather condition in three traditional villages and compared with energy consumption surveyed. A photovoltaic system having 3.0kWp capacity of unit module can generate 182.5%, 96.1% and 170.9% of the yearly mean consumption of electric power in Makhyun, Boojang, and Soso, respectively. A flat-plate solar collector having $2.64m^2$ area of unit module can generate warm water of $142{\ell}$/day, $89{\ell}$/day, and $173{\ell}$/day, respectively in three study villages. In Makhyun and Soso, photovoltaic power and warm water produced by solar energy were sufficient to supply required amount of electric power and warm water. However, both electric power and warm water produced by unit solar module were not sufficient in Boojang area, and so it is required to increase the module area by more than 50%. According to the results of this study, the appropriate combination of energy resources can be applied to rural green-village planning if the characteristic of energy potential for each local area is considered.

Evaluation of seasonal performance for single-stage desalination system with solar energy (1단 증발식 해수담수화 시스템의 계절별 성능 평가)

  • Kwak, Hee-Youl;Joo, Hong-Jin;Joo, Moon-Chang;Kim, Jung-Bae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.221-226
    • /
    • 2008
  • This study was carry out evaluation of seasonal performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a spring season day average $392W/m^2$, the daily fresh water showed to produce about 340liter. In a summer season day average $296W/m^2$, the daily fresh water showed to produce about 328liter. In a autumn season day average $349W/m^2$, the daily fresh water showed to produce about 277liter. In a winter season day average $342W/m^2$, the daily fresh water showed to produce about 271liter.

  • PDF

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • 제21권6호
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

Intercepted flow equation at grate inlet on road (도로 빗물받이 유입구의 차집유량 산정식)

  • Kim, Jung Soo;Kwak, Sang Ho;Ryu, Taek Hee;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • 제49권6호
    • /
    • pp.537-549
    • /
    • 2016
  • The grate inlets generally were installed to intercept surface runoff on the roads and intercepted flow was drained to the underground sewer system. The equation of interception flow was used to determine the size and spacing of grate inlet on the roads. Therefore, it is necessary to analyze the interception capacity of grate inlet. Hydraulic experimental apparatus which can be changed with the longitudinal slopes(2, 4, 6, 8, 10%) of street, the transverse slopes(2, 4, 7, 10%), and the lengths(50, 100, 150cm) of grate inlet was installed for this study. The range of the experimental discharges were calculated with change of road lanes(2, 3, 4) and design frequencies(5, 10, 20, 30year). As the transverse slope increased, it led to the increase of interception capacity at grate inlets. The long lengths of grate inlet with direction of flow increased the interception capacity by the increase of side inflow. On the basis of the hydraulic model experiment results, the empirical equations for calculation of the interception capacity were derived with regression analysis. As a result of comparison with equations, the suggested equation of this study was estimated reasonable one for increased design frequency. Therefore, this study can suggest the basic data for design of drainage facility at road.

Characteristics of Radon Reduction of Small-scale Water Supply System (소규모수도시설 지하수의 라돈저감 특성)

  • Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • 제29권1호
    • /
    • pp.37-50
    • /
    • 2019
  • It is possible that radon removal in groundwater of small-scale water supply system (SWSS) is caused by atmospheric storage and aeration facilities installed in the water tank. Radon removal rates at water tank and tap of the 32 SWSS during summer season ranged from -69.3% to 62.7% (average 25.7%) and from -64.3% to 83.1% (average 30.3%) while those of 16 SWSS during autumn season ranged from 21.3% to 78.0% (average 42.8%) and from 17.7% to 66.9% (average 44.8%). The reason of higher radon removal rate in the autumn season compared with the summer season is due to higher atmospheric storage effect by lower groundwater use rate. The radon removal rates at the water tank from 12 SWSS were 47.4~94.0% (average 78.9%), in which the removal rates at the atmospheric storage are also included. Atmospheric storage and aeration can be used to reduce radon concentration in SWSS groundwater. For more efficient use of radon reduction, further studies are necessary to assess the radon removal rate considering variation conditions of radon concentration in groundwater, size and forms of water tank, change in groundwater usage rate, aeration capacity and ventilation facilities.

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

A Study on the Operating Performance of a Cascade Heat Pump (캐스케이드 열펌프시스템의 운전 특성에 관한 연구)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jea-Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • 제5권1호
    • /
    • pp.7-11
    • /
    • 2009
  • The purpose of this study is to investigate the performance of a water heat source cascade heat pump system R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

Performance Test and Flue Gas Characteristics of a 350 kW Wood Pellet Boiler (350 kW(300,000 kcal/h)급 우드 펠렛 보일러 운전 특성 및 성능 평가)

  • Kim, Jong-Jin;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.167-171
    • /
    • 2009
  • We conducted performance test of a 350 kW class wood pellet boiler installed at a dormitory whose total area is $1,354\;m^2$. The maximum heating capacity of the boiler is 350 kW(300,000 kcal/kg). The wood pellet boiler consists of 3 parts; boiler, hot water storage tank and wood pellet storage tank. In testing the boiler, we shut off hot water utility supply and open up floor heating water system in order to measure exact value of the heating output of the wood pellet boiler. To determine the efficiency and heating output of the wood pellet boiler, we measured mass flow rate of wood pellet, the lower heating value(LHV) of the wood pellet, mass flow rate and temperature of water for floor heating and so on. We measured the mass flow rate of fuel, wood pellet with respect to rotational speed of auger, wood pellet feeding screw. We also measured the flue gas concentration of the wood pellet boiler by using a gas analyser. The result shows that the efficiency of the wood pellet boiler is 80.6% based on lower heating value at 124 kW of heating output. At this condition, O2 concentration of the flue gas is 6.0%, CO and NOx concentrations are 85 and 102 ppm.

  • PDF

Vunerability Assessment of Water Supply Capacity in Dam using Copula-based Bivariate Frequency Analysis (Copula 기반 이변량 빈도해석기법의 적용을 통한 댐 용수공급 취약성 평가 방법의 개선)

  • Cho, Eunsaem;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.21-21
    • /
    • 2018
  • 수자원 시스템의 용수공급의 안정도를 평가하는 지표로 국내에서는 이수안전도 혹은 안전채수량(safety degree for water shortage or safe yield)의 개념이 이용된다. 아울러 공급 측면에서는 기준갈수량, 공급신뢰도, 저수용량 등이 분석되고 있으며, 수요 측면에서는 용수공급 보장일수, 최소 부족량, 갈수 조정기간 및 용수부족에 따른 피해정도 등을 고려하고 있다. 전통적으로 수자원 시스템의 평가는 용수공급 실패기간의 통계적 특성을 분석하여 이루어진다. 용수공급 실패기간으로부터 분석되는 통계적 특성은 용수부족 발생빈도, 용수부족 지곡기간 및 용수부족 총 양 등 세 가지로 정량화되는 것이 일반적이다. 수자원 시스템이 수요를 만족시키는 정도인 신뢰도(reliability), 용수부족 발생 후 얼마나 빨리 회복하는지를 나타내는 회복도(resilience) 및 용수부족의 양적 크기를 나타내는 취약도(vulnerability)의 지표는 앞서 언급된 세 가지 통계 특성으로부터 계산된다. 본 연구에서는 Copula 기반 이변량 빈도해석 개념을 적용하여 댐 용수공급 취약성 평가 방법을 개선한 후, 국내 남강 댐 유역의 용수공급 취약성을 평가해보고자 한다. 이를 위해, 국내외에서 이용되고 있는 용수공급 평가지표들의 특성들을 정리하였다. 다음으로는, 취약성 평가 방법에 Copula 기반 이변량 빈도해석 방법을 적용하는 방법을 제안하였다. 본 연구의 분석은 용수공급 실패 사상을 기준으로 수행되었으며, 용수공급 실패 사상의 발생확률은 포아송 분포, 총 부족량은 대수정규분포로 모의되었다. 최종적으로는 남강 댐의 재현기간별 취약성 평가 결과를 도출하여 본 연구에서 제안한 취약성 평가방법의 적용성을 검증하였다.

  • PDF