• Title/Summary/Keyword: Water supply and storage reliability

Search Result 31, Processing Time 0.02 seconds

A Study for Storage Reallocation of Multipurpose Reservoir(II) - Conservation Storage Analysis (다목적댐 용량 재할당에 대한 연구(II)- 이수용량 분석)

  • Yi, Jae-Eung;Kwon, Yong-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.283-292
    • /
    • 2004
  • In the past, it was unnecessary to consider the reallocation of reservoir storage because new reservoir construction was relatively not difficult. However, it became necessary since it is so difficult to construct new reservoirs in these days. In this study, the change of the water supply capability is evaluated through conservation storage drawdown frequency analysis, hydropower analysis, reliability, resiliency and vulnerability analyses for Geum River basin. As a result, it is confirmed that water supply capability of Daechung reservoir can be increased by reallocating flood control storage to conservation storage.

Optimizing Rules for Releasing Environmental Water in Enlarged Agricultural Reservoirs (둑높이기 농업용저수지의 환경용수 방류기준 설정)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong;Park, Tae-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.17-24
    • /
    • 2012
  • The main purposes of the agricultural reservoir enlargement (ARE) project are to secure water supply reliability (WSR) for agriculture and to release environmental water during dry seasons. In this study, an operational rule that will simultaneously satisfy both the above issues was developed. Initial amount of water storage at the beginning of non-irrigation season (1st October) was divided into 3 stages, and the target level of water storage at the beginning of irrigation seasons (1st April) was set up. Required operational curves and release amounts were estimated based on the stages and target water levels. To evaluate the applicability of this rule, the amount of water released for environmental purposes and WSRs were analyzed for three reservoirs (Unam, Jangchi and Topjeong). The ratio between annual amount of release and additional amount of water storage were 1.6, 1.85, and 4.1 for the Unam, Jangchi, Tapjeong reservoirs, respectively. Also, the WSRs of all reservoirs were found to become higher than when the design standard was applied. Therefore, it is considered that the proposed rule is more suitable for the enlarged agricultural reservoirs operation as it satisfies the WSRs while securing the environmental water release.

Evaluating Water Supply Capacity of Embankment Raised Reservoir on Climate Change (기후변화에 따른 둑높임 저수지의 용수공급능력 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • An embankment raising project on 113 agricultural reservoirs in Korea was implemented in 2009 to increase water supply capacity for agricultural water and instream uses. This study evaluated the future water supply capacity of the Imgo reservoir at which the agricultural reservoir embankment raising project was completed, considering climate change scenarios. The height of the embankment of the reservoir was increased by 4.5 m, thereby increasing its total storage from 1,657.0 thousand to 3,179.5 thousand cubic meters. To simulate the reservoir water storage with respect to climate changes, two climate change scenarios, namely, RCP 4.5 and RCP 8.5 (in which greenhouse gas reduction policy was executed and not executed, respectively) were applied with bias correction for reflecting the climate characteristics of the target basin. The analysis result of the agricultural water supply capacity in the future, after the agricultural reservoir embankment raising project is implemented, revealed that the water supply reliability and the agricultural water supply increased, regardless of the climate change scenarios. By simulating the reservoir water storage considering the instream flow post completion of the embankment raising project, it was found that water shortage in the reservoir in the future is not likely to occur when it is supplied with an appropriate instream flow. The range of instream flow tends to decrease over time under RCP 8.5, in which the greenhouse gas reduction policy was not executed, and the restoration of reservoir storage was lower in this scenario than in RCP 4.5, in which greenhouse gas reduction policy was executed.

Analysis of Water Supply Reliability of Agricultural Reservoirs Based on Application of Modified Penman and Penman-Monteith Methods (수정 Penman 및 Penman-Monteith 논벼 증발산량 방법 적용에 따른 농업용 저수지 용수공급능 분석)

  • Cho, Gun Ho;Han, Kyung Hwa;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.93-101
    • /
    • 2019
  • This study aims to analyze the influences of applications of two different evapotranspiration (ET) estimation methods on the irrigation water requirements (IWR) for paddy rice and water supply reliability of agricultural reservoirs. The modified Penman (MP), traditional method, and the Penman-Monteith (PM), the new adopted method, were applied on 149 reservoirs located in Honam province for this study. The weather date was used from 1987 to 2016, and analysed the trends of temperature and rainfall during rice growing season between past and current 10 years respectively. The increased average temperature and rainfall were observed from the current 10 years compared to the past years. This phenomena impacts on the results of ET and IWR estimations with decreased IWR obtained from high rainfall regions and increased ET obtained high temperature regions. For the comparisons of application results of two ET approaches, the PM method showed lower ET and IWR, and hence more reliable storage capacity of the reservoirs respect to water supply to paddy fields. The results also showed that the influences of different ET methods applications on the water supply reliability of reservoirs are negligible for the cases of over 3.7 watershed ratio and 670 mm unit reservoir storage, while significant variations of the results obtain from the applications between two ET approaches for the opposite cases. Further studies are necessary to consider various field conditions for practical applications of the PM method estimating ET in the fields of paddy farming.

A decision-centric impact assessment of operational performance of the Yongdam Dam, South Korea (용담댐 기존운영에 대한 의사결정중심 기후변화 영향 평가)

  • Kim, Daeha;Kim, Eunhee;Lee, Seung Cheol;Kim, Eunji;Shin, June
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.205-215
    • /
    • 2022
  • Amidst the global climate crisis, dam operation policies formulated under the stationary climate assumption could lead to unsatisfactory water management. In this work, we assessed status-quo performance of the Yongdam Dam in Korea under various climatic stresses in flood risk reduction and water supply reliability for 2021-2040. To this end, we employed a decision-centric framework equipped with a stochastic weather generator, a conceptual streamflow model, and a machine-learning reservoir operation rule. By imposing 294 climate perturbations to dam release simulations, we found that the current operation rule of the Yongdam dam could redundantly secure water storage, while inefficiently enhancing the supply reliability. On the other hand, flood risks were likely to increase substantially due to rising mean and variability of daily precipitation. Here, we argue that the current operation rules of the Yongdam Dam seem to be overly focused on securing water storage, and thus need to be adjusted to efficiently improve supply reliability and reduce flood risks in downstream areas.

Development of WRAP-SALT for Quantitative Analysis of Water Supply Capabilities considering Water Quality (수질을 고려한 수자원 공급의 정량적 분석을 위한 WRAP-SALT 개발)

  • Lee, Chi-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.58-58
    • /
    • 2011
  • The Texas Commission on Environmental Quality(TCEQ) WAM(Water Availability Modeling) System consists of the generalized Water Rights Analysis Package(WRAP) river/reservoir system water management simulation model, 22 sets of WRAP hydrology and water rights input files for the 23 river basins of Texas, geographic information system tools, and other supporting databases. The WRAP/WAM modeling system, as routinely applied since the late 1990s, has not included consideration of water quality. Recently developed WRAP-SALT(Water Rights Analysis Package) is designed primarily for computing concentration frequency statistics and supply reliability indices at locations of interest in a river system for alternative water development and management scenarios. Though motivated primarily by natural salt pollution, WRAP-SALT water quality modeling features are applicable to essentially any conservative water quality constituent. The Brazos River studies discussed in this paper focus on total dissolved solids, though the available observed data also includes chloride and sulfate which can be modeled as individual constituents. The WRAP-SALT salinity input file contains loads or concentrations of salinity inflows during each month of the hydrologic period-of-analysis and reservoir storage at the beginning of the simulation. The WRAP-SALT model computes salt loads and concentrations for each control point of a river/reservoir system for inflows and outflows during the month and end-of-month reservoir storage for each month of the hydrologic period-of-analysis, for given loads entering the system. River reaches connect control points. The mass balance algorithms proceed from upstream to downstream, with outflow from one river reach contributing to inflow to the next downstream reach. In a given month, for each control point in sequence, the inflow loads are first computed. Loads and concentrations of outflows and reservoir storage at the control point are then determined. Complete mixing during the month is assumed at locations without reservoir storage.

  • PDF

Evaluation of Supplying Instream Flow by Operation Rule Curve for Heightening Irrigation Reservoir (이수관리곡선에 의한 증고저수지의 하천유지유량 공급 가능성 평가)

  • Lee, Jae-Nam;Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.481-490
    • /
    • 2010
  • Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water levels will be heightened from EL. 100.1 m to EL. 102.1 m, and total storages from 21.75 $Mm^3$ to 26.67 $Mm^3$. The simulation for reservoir inflow was conducted by DAWAST model. The annual average irrigation water was estimated to 33.19 $Mm^3$ supplied to 2,975 ha and the instream flows could be allocated with 0.14 mm/d from October to April with annual average of 2.52 $Mm^3$. The operation rule curve was drawn using inflow, irrigation, and instream flow requirements data. The reservoir water storage was simulated on a daily basis in case of both normal and withdrawal limit operation. In case of normal operation, the annual average irrigation water supply increased from 31.95 $Mm^3$ to 33.32 $Mm^3$, the instream water supply from 2.40 $Mm^3$ to 2.44 $Mm^3$, the water storages from 15.74 $Mm^3$ to 19.88 $Mm^3$, and the water supply reliability from 77.3 % to 81.6 %. In case of operation with withdrawal limit, the amount of instream water supply was 2.52 $Mm^3$ from reservoir regardless of the condition while the water storage increased from 16.77 $Mm^3$ to 20.65 $Mm^3$. The irrigation water supply capacity was appropriate for the case of normal operation with 2 m heightened condition. The present instream water supply capacity was 35,000 $m^3$/d (6.86 $Mm^3$/y) while 42,000 $m^3$/d (8.36 $Mm^3$/y) in 2 m heightened condition in case of withdrawal limit operation.

Estimation of irrigation return flow from paddy fields based on the reservoir storage rate

  • An, Hyunuk;Kang, Hansol;Nam, Wonho;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study proposed a simple estimation method for irrigation return flow from paddy fields using the water balance model. The merit of this method is applicability to other paddy fields irrigated from agricultural reservoirs due to the simplicity compared with the previous monitoring based estimation method. It was assumed that the unused amount of irrigation water was the return flow which included the quick and delayed return flows. The amount of irrigation supply from a reservoir was estimated from the reservoir water balance with the storage rate and runoff model. It was also assumed that the infiltration was the main source of the delayed return flow and that the other delayed return flow was neglected. In this study, the amount of reservoir inflow and water demand from paddy field are calculated on a daily basis, and irrigation supply was calculated on 10-day basis, taking into account the uncertainty of the model and the reliability of the data. The regression rate was calculated on a yearly basis, and yearly data was computed by accumulating daily and 10-day data, considering that the recirculating water circulation cycle was relatively long. The proposed method was applied to the paddy blocks of the Jamhong and Seosan agricultural reservoirs and the results were acceptable.

Performance Evaluation of Water Supply for a Multi-purpose Dam by Deficit-Supply Operation (물 부족량 공급 운영 방식에 의한 다목적댐 물 공급의 안정성 평가)

  • Lee, Dong Ryul;Moon, Jang Won;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.195-206
    • /
    • 2014
  • In this study, a performance evaluation method of water supply for a multi-purpose dam based on deficitsupply method and reservoir storage is presented. The method is applied to 16 multi-purpose dams and water supply performance is evaluated. As a result, 6 dams (Soyanggang, Chungju, Hoengseong, Andong, Imha, and Hapcheon dam) have highest performance and 2 dams (Sumjingang and Buan dam) have relatively low performance. Particularly, Buan dam is the most vulnerable in the analysis results of reliability, resiliency, and vulnerability. Therefore, measures to improve the performance of water supply are needed in Buan multi-purpose dam.

Affecting Water Supply Capacity Followed by Allocating Flood Control Volume in Heightening Reservoir (홍수조절용량 설정에 따른 증고저수지의 용수공급능력 변화)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.57-70
    • /
    • 2010
  • This study was performed to analyze the affect of water supply capacity followed by allocating flood control volume in heightening reservoir, of which Baekgog reservoir was selected as a case study in here. Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water level will be heightened from EL. 100. 1m to EL. 102.1m, and total storage from 21.75M $m^3$ to 26.67M $m^3$. Flood inflow with 200year frequency was estimated to 997 $m^3$/s in peak flow and 22.54M $m^3$ in total volume. Reservoir flood routing was conducted to determine flood limited water levels, which was determined to have scenarios such as EL 97-98-99m in periods of 6.21.-7.20., 7.21.-8.20., and 8.21.-9.20., respectively, EL 97-97-97m, EL 98-98-98m in present reservoir, and EL 99-100-101m, EL 99-99-99m, and EL 100-100-100m in heightened reservoir. Reservoir inflow was simulated by DAWAST model. Annual paddy irrigation requirement was estimated to 33.19M $m^3$ to 2,975ha. Instream flow was allocated to 0.14mm/d from October to April. Operation rule curve was drawn using inflow, irrigation and instream flow requirements data. In case of withdrawal limit reservoir operation using operation rule curve, reduction rates of annual irrigation supply before and after flood control by reservoir were 2.0~4.3% in present size and 1.5~3.6% in heightened size. Reliability on water supply was decreased from 77.3% to 63.6~68.2% in present size and from 81.6% to 72.7~79.5% in heightened size. And reduction rates of water storage at the end of year before and after flood control by reservoir were 7.3~16.5% in present size and 7.7~16.9% in heightened size. But water supplies were done without any water deficiency through withdrawal limit reservoir operation in spite of low flood regulating water level.

  • PDF