• Title/Summary/Keyword: Water spray extinguishing system

Search Result 15, Processing Time 0.026 seconds

A Study of Computational Fluid Dynamics Analysis for the Water Spray Distance of Long Jet Monitor (Long Jet Monitor의 소화수 분사 거리에 대한 유동 해석적 연구)

  • Jae-Sang Jo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.907-913
    • /
    • 2023
  • Currently, the sprinkler method is widely used as an initial suppression method in existing firefighting systems. However, this method can cause significant damage to both equipment and facilities in the hydration area. To minimize this damage, fire extinguishing monitors are being developed that can spray fire extinguishing water directly at the point of fire. These monitors are installed on the top floor of the ship, such as the Living Quarter and Ventilation System. While conventional fire extinguishing monitors focus on lightweight research with a short spray port and require a spray distance of about 40 to 45m, recent developments necessitate a longer spray port, similar to a water cannon, requiring a spray distance of about 70 to 75m. This study aims to predict the injection distance of both the existing ship-installed fire extinguisher and the long spray port fire extinguisher through hydrodynamic computer analysis, and to determine whether the injection distance has increased.

Effectiveness of Friction Loss Calculation Used for Water Mist Fire Extinguishing System on Marine Vessels

  • Lee Kyung-Woo;Kim You-Taek;Lee Young-Ho;Kim Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.86-97
    • /
    • 2005
  • Nowadays, Water Mist Fire Extinguishing System is increasingly used in maritime field for various application. The fire extinguishing capability of the system should be verified by hydraulic calculation in the same manner as the conventional water based fire extinguishing system such as sprinkler system. water spray system and etc. Additionally, the review of effectiveness of friction loss calculation method used for hydraulic calculation is needed because the pipe flow characteristic of its piping system has higher Reynolds number than that of the conventional system. In this paper the review work was carried out based on the NFPA Code 750.

Assessment of the Usefulness of the Water Spray for Fire Extinguishing in Case of Fire in Tunnels (터널 화재시 수분무 소화설비의 효용성 평가)

  • Rie, Dong-Ho;Lim, Kyung-Bum;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.55-60
    • /
    • 2008
  • In this study, we conducted an FDS numerical simulation for the purpose of carrying out a basic assessment of the usefulness of the water spray for fire extinguishing. We analyzed the effect of securing the stability in temperature and smoke density in case of fire according to fire intensities (20MW, 50MW) and changes in wind speed. When there was no wind speed in tunnels, it was effective in securing the safety of people because the cooling effect of the water spray system had an excellent effect on reducing temperatures and smoke densities there. The higher a fire intensity is, the less effect it has on reducing smoke flows. When an air current exists in tunnels, its cooling effect disturbs the smoke stratification and lowers the visibility degree during evacuation. Therefore, the water spray for fire extinguishing should be put into action only after people take shelter during fire.

Performance of Fire Extinguishing of Water Mist Nozzle for Power Transformer Fire Scenario (주 변압기실 화재시나리오에 적용한 미세물분무 노즐의 소화성능)

  • Lee, Kyoung-Duck
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.46-54
    • /
    • 2006
  • Fire extinguishing experiment was conducted with water mist nozzle in case of the pool fire, cascade fire and spray fire on flammable liquid of class B whether water mist system can be effective system for power transformer fire scenario. In the event of a pool fire, flow rate and time to extinguish was inclined to be increased according to the obstruction rate of ignition space. Furthermore, the performance of fire extinguishing depended upon the spraying angle of the nozzles. In case of cascade fire, the effect of extinguishment was began to show from a combustion pan filled with fuel and fuel flowing plate later on.

Spray Flow Characteristics of Twin-fluid Water Mist Nozzle for Fire Suppression (2유체 미세 물분무 소화노즐의 분무유동 특성)

  • Kim, Bong-Hwan;Choi, Hyo-Sung;Kim, Dong-Keon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.60-66
    • /
    • 2011
  • In the present investigation, experimental studies were conducted on the fire suppression performance of twin-fluid water mist spray which is subjected to thermal radiation in a closed space. Downward-directed water-mist sprays, interacting with an under kerosene pool fire, were investigated in a test facility. The mass mean diameter of water-mist droplets were measured by PMAS under various flow conditions. The developed twin-fluid water mit spray nozzle satisfied the criteria of NFPA 750, Class 1. The mechanism of fire suppression by fine water mist was concluded to be the cooling of the fire surface which leads to the suppression of fuel evaporation. It was proved that the automatic twin-fluid water mist spray system under lower pressures could be applied to an industrial facilities.

A Study on Smoke Movement Characteristics for Water spray system Installation in Tunnel (터널내 수분무 시설 설치시 연기유동 특성 연구)

  • Lim, Kyung-Bum;Kim, Ha-Young;Yoo, Ji-Oh;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.230-233
    • /
    • 2008
  • In this study, we conducted an FDS simulation for the purpose of carrying out a basic assessment of the usefulness of the water spray for fire extinguishing. We analyzed the effect of securing the stability in temperature and smoke density in case of fire according to fire intensities and changes in wind speed. When there was no wind speed in tunnels, it was effective in securing the safety of people because the cooling effect of the water spray system had an excellent effect on reducing temperatures and smoke densities there.

  • PDF

Analysis of Water Flux Uniformity for Various Fire Sprinkler Head Type (화재 진압용 스프링클러 헤드 유형에 따른 살수 균일도 분석)

  • Saemi Bang;Chanseob Ahn;Taehoon Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.97-104
    • /
    • 2023
  • A sprinkler is a fire suppression system that extinguishes combustible materials in the early stages of a fire, creating a spray. However, spray formation method of the sprinkler can result in an uneven distribution of water spray on the surface of combustible materials. It is necessary to ensure a consistent water flux density regardless of the spray direction and angle. In this study, the water flux distribution was analyzed for the various types of sprinkler head: circular, flush, pendent, and upright types. All sprinkler heads have a K-factor of 80 LPM/(0.1MPa)0.5. In this study, water collection cubes were used to examine the water flux distribution. The upright type sprinkler head showed a low standard deviation in total sprayed area, indicating a high level of uniformity. The upright type head showed the lowest standard deviation in the radial direction, and also showed the lowest standard deviation in the azimuthal direction. Upright sprinkler head has no obstructing structure along the path of droplets after they are generated. For this reason, upright sprinkler head showed the most uniform water flux distribution on the floor.

Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles (이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션)

  • Bae, K.Y.;Chung, H.T.;Kim, H.B.;Jung, I.S.;Kim, C.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF

Extinguishing of Oil Fire by Water Mist Suppression System Using Compressed Inert Gas (불활성 압축가스를 이용한 미세물분무 소화시스템의 유류화재 소화특성)

  • Shin, Chang-Sub;Jeon, Go-Un;Kim, Ki-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.109-114
    • /
    • 2010
  • Water mist fire suppression system is environmental system and needs a flange pump to jet water. In this research, high pressure Nitrogen cylinder is used as a pressurizing source instead of flange pump, and also we tried to find the possibility of using compressed Nitrogen as a fire suppression agent. As a result, it was possible to design water mist fire suppression system with Nitrogen cylinder and suppress oil fire effectively. With DK1.58 nozzle, the optimum Nitrogen pressure was 80bar and the pressure was stable during water mist spray. However, jet of Nitrogen was not effective fire suppression agent when it was dually used with water mist because water mist has blown away, and it is efficient way to use compressed Nitrogen as a pressurizing source only.

The study on application of automatic monitor system for initial fire suppression in double-deck tunnel (대심도 복층터널 초기화재 진압을 위한 자동모니터 소화설비의 적용성 연구)

  • Yoo, Yong-Ho;Park, Sang-Heon;Han, Sang-Ju;Park, Jin-Ouk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.419-429
    • /
    • 2016
  • In a bid to avoid the economic loss resulting from traffic jam in urban area, a deep underground road at 40 m depth has been considered and the first class disaster prevention facilities shall be applied according to domestic guideline. Automatic-monitoring fire extinguishing system designed to use for fire fighting has been widely applied at home and abroad. Recently development and commercialization through theoretical and experimental research to apply to road/railroad sector have been underway. Based on such performance of automatic fire extinguishing system, technical/economic analysis of existing water spray systems was conducted and as a result, it has demonstrated the superiority in terms of fire suppression as well as in cost efficiency. Then to commercialize this system, more diverse studies that will incorporate the characteristics of domestic tunnels are needed and should the system be promoted through institutional improvement, it's expected to become one of the advanced nations with own original technology in a life safety system industry throughout the world.