• Title/Summary/Keyword: Water speed

Search Result 2,502, Processing Time 0.033 seconds

High-Speed and High-Reliability Data Transmission Technology for Next Generation Under-Water Communications (차세대 수중통신용 고속 고품질 데이터 전송 기법)

  • Jeong, Jin-hee;Choi, Duk-gun;Jung, Ji-won
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.448-453
    • /
    • 2005
  • For under-water communication system, due to limit of bandwidth and reflect of under-water wave, it is difficult to implement high-reliability high-speed digital communication system. To apply high-reliability and high-speed communication system for under-water system, the efficient combine the channel design with the use of multiple transmit and/or receive antennas. Therefore this paper analyze the space time coded system for under-water communication environment.

  • PDF

Brushless DC Motor Control for Photovoltaic Water-Pumping System (PV Water Pumping 시스템을 위한 BLDC 모터 제어)

  • 김성남;최성호;조정민;전기영;이승환;한경희
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.50 no.3
    • /
    • pp.109-116
    • /
    • 2001
  • In this paper, we adapted BLDC motor to PV water pumping systems to maintain high efficiency in the wide speed area. Also, to design confidence we adapted the vector control that drive the maximum torque at each speed limit. We designed optimal gain value of current, speed and pressure PI controller. Inverter gate pulse used Space Vector PWM to reduce torque pulsation of BLDC motor. According to, it was improve general matters of high water storage tank method by direct water supply pumping method.

  • PDF

Numerical Analysis on Changes in Flowrate of Draft Water and Power by Changing Design Parameters of a Long-Distance Water Circulation (저층수 흡입식 광역 순환장치의 설계변수에 따른 배출량 및 소비동력 변화 특성에 대한 수치 해석 연구)

  • Song, Dong-Keun;Hong, Won-Seok;Kim, Young-Cheol;Park, Myong-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • A draft tube which has impeller to elevate bottom water and spread it over surface of lake water, induces convective circulation of lake water, a Long-Distance Circulation (LDC). Circulation of lake water make stratified water mixed and enhance DO (Dissolved Oxygen) of bottom water. Circulation rate of water is determined by draft rate of the tube, which is dependent on design parameters of the draft tube system, i. e. dimension of impeller and diffuser, inclined angle of impeller, impeller shape, and rotational speed. In this study, change in draft rate and power consumption of circulation equipment was investigated numerically with changing impeller dimension, angle and rotational speed. It was found that flowrate of draft water was increased as the dimensions of draft tube and impeller, and rotational speed and inclined angle of impeller increased. The power consumption was also elevated with increasing parameter values, and final selection of parameter values was made to satisfy target flowrates and power consumption.

An Introduction to Speed Control System of Small Steam Turbine for Feed Water Supply in Power Plant (발전소 급수펌프 구동용 소형 터빈 제어시스템 소개)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1603-1604
    • /
    • 2007
  • The load of power plants changes every from time to time according to which steam flow of boiler changes. the feed water control is very important for the power plant to be operated in its stability conditions. In case of circulation type boiler, the instability of feed water control leads to instability of drum level control. The higher level of drum water can induce bad quality steam to go into turbine which means the possibility of damage. The lower level of drum water can induce the tubes of boiler water wall to be overheated. In case of once through type boiler, the instability of feed water control leads to bad cooling of superheaters. The less the feed water flow is, the more heated the superheater is. It is necessary for the turbine driving feed water pump to be controlled for the optimal feed water flow in the large capacity power plant. The speed of turbine is controled for the feed water flow. By the way, the optimal control of steam valve is necessary for the speed control of turbine. Therefore, the various kinds of the steam valve structures are introduced in this paper

  • PDF

The Movement of the Cold Water in the Korea Strait

  • Lim, Du Byung
    • 한국해양학회지
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 1973
  • From available data, the movement of the cold water in the Korea Strait was investigated. The cold water forms an undercurrent with a speed of 0.10knots near Ulgi in June. Sometimes it reaches a speed of 0.35knots. The cold water forms a sharp wdege in the western channel like a salt wedge in an estuary. The calculated volume transport of the cold water is 17,135 cubic meters per second in June. The external influences are also discussed.

  • PDF

The construction of a PLC simulator for level control (유량 제어을 위한 PLC 시뮬레이터 구성)

  • Lee, Gi-Bum;Yoon, Woo-Sik;Jeong, Hee-Don;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2605-2607
    • /
    • 2000
  • This paper represents the construction of a PLC simulator for the level control of water and the speed control of the water cask. The level and speed processes are automatically operated by the PLC. The simulator system consists of PLC, program loader and control penal. The digital input and output units make the valves of the water cask the On or Off state. The analog input and output units control the level of water and the speed of the water cask. A LD program is used in the control language of PLC.

  • PDF

A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis (수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰)

  • Seo, Dong-Il;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

Shallow Water Effect on Resistance Performance of Large Container Ship Based on CFD Analysis (천수 효과가 대형 컨테이너선의 저항 성능에 미치는 영향에 관한 전산유체역학 해석 연구)

  • Sun-kyu, Lee;Youngjun, You;Jinhae, Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.345-354
    • /
    • 2022
  • It is easy for a ship passing through confined waters to be exposed in dangers of collisions and grounding due to different hydrodynamic responses. Since marine accidents can cause significant impacts on environments, global economy, and human lives, it is necessary to study the effect of shallow water on hydrodynamic performance of a ship. In this paper, the effect of water depth on resistance performance was investigated using CFD analysis as an initial study for improving navigational safety of a large container ship under confined waters. After a CFD set-up for deep water condition was validated and verified by comparing CFD analysis with model test results, CFD calculations according to ship speed and water depth were conducted. The features were investigated in terms of tendency and physical knowledge related to resistance performance. The increase of resistance due to shallow water effect was reviewed with empirical formula suggested from SWABE JIP. Speed loss due to shallow water effect was additionally reviewed from estimated delivered power according to ship speed and water depth.

Observed Long-term Water Content Change in Concrete Track Roadbed by Rainfall (콘크리트궤도노반에서의 강우량에 따른 장기 함수비 변화)

  • Choi, Chanyong;Kim, Hunki;Yang, Sangbeom;Eum, KiYoung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.35-43
    • /
    • 2015
  • In this study, it was performed in characteristics of settlement of roadbed materials with variation of water content using cylinder model device. The ratio of settlement ($R_e$) of subgrade soils in the initial water content were about 2.08, whereas it was increased about 4.06 which resulted in increase two times in the initial water content. Also, it was monitoring long-term to measure variation of the field water contents at concrete track using rainfall measuring sensors. The water content at directly underneath of concrete track rarely seems to affect the variation of water content, but it was increased by about 4% than intial water content with 20 mm/hr rainfall index at slope section. As for the result from the field date, it was determined that the water content of the inner subgrade layer was rarely affect caused by more than 20 mm/h rainfall index during if good drainage system at concrete track properly maintained.

A Study on the Optimization of Sabot Assembly Design for Micro Ball Velocity Multiplication (소형구 속도 증폭을 위한 사보조립체 디자인 최적화 연구)

  • Park, Geunhwee;Jin, Doohan;Kim, Teayeon;Kang, Hyung;Chung, Dongteak
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.37-42
    • /
    • 2020
  • This study is for a bulletproof experiment through speed acceleration of steel ball(2.385 mm) at the laboratory level. The secondary propulsion method is used for speed acceleration, which uses a sabot assembly consisting of a sabot body, a plunger, water, and a sabot cap. At the core of the secondary drive, it is important that the energy in the water of the private particle is transferred well to the steel ball. The experiment was conducted by selecting a plunger that pushes water and water charged with variables. judging that the longer the contact time, the greater the energy transferred to the steel ball. As a result of experiments with each variable, the amount of water does not affect the speed acceleration efficiency of the steel ball and, when the length of the plunger is increased by 200 %, the speed of the steel ball can be accelerated up to 130 m/s.