• Title/Summary/Keyword: Water sorption

Search Result 390, Processing Time 0.022 seconds

Characteristics of Water Vapor Sorption Phenomena of Powdered Foods (건조분말 식품의 수분 특성에 관한 비교 연구)

  • 박길동;김동원
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.30-37
    • /
    • 1982
  • This study was conducted to investigate the water vapor permeability of packaging film, Al- foil laminated paper, and sorption properties of dehydrated and powdered foods. The results are as fellows. 1. Absorption rate of each products was greately affeoted by physicochemical properties of foods rather than initial moisture contents of the products. 2. The absorption rate of each products were in the order of freeze dried coffee, spray dried coffee, freeze drie4 ginseng extract, spray dried ginseng extract, ginger tea, black tea, citrus juice Powder and ssang wha tea. 3. Most of the products such as freeze dried coffee, spray dried coffee, freeze dried ginseng extract, ginger tea and black tea have shorter than a month of shelf life. 4. The stability of the products were greatly affected by its desorption properties than the degree of desorption of moisture. 5. Water vapor permeability of packaging materials which are laminated Al-foil with polythylene and glassin paper were mainly affected of thickness of Al-foil and polyethylene.

  • PDF

CHARACTERIZATION OF POOL-RIFFLE SEQUENCES IN SOLUTE TRANSPORT MODELING OF STREAMS

  • Seo, Il-Won;Yu, Dae-young
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.171-185
    • /
    • 2000
  • A mathematical model to adequately predict complex mixing characteristics of sorptive polluants in natural streams with pools-and-riffes has been developed. In this model, sorption of pollutants onto the bed sediment as well as mass storage and exchange in the storage zones were incorporated into one-dimensional mass balance equatins. The geometric and hydraulic characteristics of the pool-riffle sequences were properly conceptualized. Simulations with parameters of pool-and-riffle streams better fit the measured data in overall shape and peak concentration than simulations with parameters for uniform channels. The analyses on the characteristics of the storage zone model parameters reveal that a linear relationship between the logrithm of the storage zone volume ratio and a function of the friction factor exists. A linear relatiohship might also be tenatively assumed between the logarithm of the dimensionless mass exchange coefficient and the logarithm of the aspect ratio of the storage zone if some of the high values of the dimensionless mass exchange coefficient collected on the successive bed forms are excluded.

  • PDF

Effect of adhesive hydrophobicity on microtensile bond strength of low-shrinkage silorane resin to dentin (접착시스템의 소수성이 Low-shrinkage silorane resin과 상아질의 미세인장강도에 미치는 영향)

  • Cho, So-Yeun;Kang, Hyun-Young;Kim, Kyoung-A;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.280-289
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate ${\mu}TBS$ (microtensile bond strength) of current dentin bonding adhesives which have different hydrophobicity with low-shrinkage silorane resin. Materials and Methods: Thirty-six human third molars were used. Middle dentin was exposed. The teeth were randomly assigned to nine experimental groups: Silorane self-etch adhesives (SS), SS + phosphoric acid etching (SS + pa), Adper easy bond (AE), AE + Silorane system bonding (AE + SSb), Clearfil SE bond (CSE), CSE + SSb, All-Bond 2 (AB2), AB2 + SSb, All-Bond 3 (AB3). After adhesive's were applied, the clinical crowns were restored with Filtek LS (3M ESPE). The 0.8 mm ${\times}$ 0.8 mm sticks were submitted to a tensile load using a Micro Tensile Tester (Bisco Inc.). Water sorption was measured to estimate hydrophobicity adhesives. Results: ${\mu}TBS$ of silorane resin to 5 adhesives: SS, 23.2 MPa; CSE, 19.4 MPa; AB3, 30.3 MPa; AB2 and AE, no bond. Additional layering of SSb: CSE + SSb, 26.2 MPa; AB2 + SSb, 33.9 MPa; AE + SSb, no bond. High value of ${\mu}TBS$ was related to cohesive failure. SS showed the lowest water sorption. AE showed the highest solubility. Conclusions: The hydrophobicity of adhesive increased, and silorane resin bond-strength was also increased. Additional hydrophobic adhesive layer did not increase the bond-strength to silorane resin except AB2 + SSb. All-Bond 3 showed similar ${\mu}TBS$ & water sorption with SS. By these facts, we could reach a conclusion that All-Bond 3 is a competitive adhesive which can replace the Silorane adhesive system.

The Relationship between Affinity of Membrane and Optimum Operation Conditions in the Pervaporation of Aqueous Ethanol (에탄올 수용액의 투과증발에 있어서 막의 친화성과 최적 조업조건의 관계)

  • 전종기;명완재;임선기
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.34-43
    • /
    • 1991
  • The relationships between affinity of membranes and optimum operation conditions were investigated in the pervaporation of water(1)/ethanol(2) mixture through cellulose acetate(CA) membranes having more affinity to water and silicone rubber(SR) membranes having more affinity to ethanol. CA and SR membranes were prepared and amount of sorption, sorption selectivity, pervaporation separation factor and pervaporation rate in both of membranes were determined and compared. The effects of downstream pressure were analyzed using Thompson diagram and the sorption and pervaporation characteristics with composition of feed and operation temperature were examined in terms of affinity, activity coefficient, plasticizing effect and activation energy of individual species. In the separation of water through CA membranes, high performance of both pervaporation separation factor (water to ethanol, $[\alpha^2_1]_{PV}$) and pervaporation rate was obtained in the conditions of low downstream pressure, middle range of feed concentration and high temperature. In the separation of ethanol through SR membranes, pervaporation separation factor(ethanol to water, $[\alpha^2_1]_{PV}$) increased with downstream pressure and decreased with concentration of ethanol in feed and operation temperature, while pervaporation rate showed opposite trends to those of ($[\alpha^2_1]_{PV}$).

  • PDF

Characterization of Water Sorption for Defatted Soybean Hydrolysates (탈지대두분해물(脫脂大豆分解物)의 흡습특성)

  • Kim, Jae-Sig;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-240
    • /
    • 1986
  • Soybean hydrolysate (SHT) was prepared from defatted soybean by hydrolysing with papain and ${\alpha}-amylase$ and water sorption isotherms were determined as a function of proteolysis degree. The moisture content and B.E.T. value of SHT at a certain water activity $(A_w=0.80)$ increased lineraly with increasing degree of proteolysis. However, they changed drastically above 70% proteolysis. The water holding capacity of 78% SHT was similar to that of sorbito. The results indicate the increase of water sorption capacity is due to the release of polar groups through hydrolysis. Mizrahi equation generally gave the best fit for isotherms of SHT. Storage stability of intermediate moisture foods containing $5{\sim}10%$ SHT increased considerably, although some favorable characteristics decreased.

  • PDF

파쇄 폐타이어가 혼합된 생물학적 반응벽체에 관한 연구 : 폐타이어와 미생물의 MTBE (Methyl tertiary Butyl Ether) 흡착

  • 정수봉;이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.23-26
    • /
    • 2004
  • Methyl Tertiary-Butyl Ether is one of several fuel oxygenates added to gasoline to improve fuel combustion and reduce tile resulting concentration of hydrocarbon. Thus, MTBE transfer readily to groundwater from gasoline leaking from Underground Storage Tank. Therefor, there are significant risks and costs associated with the water contamination. MTBE is far more water soluble than gasoline hydrocarbon. The purpose of the this study is to test the ability of ground tire with facultative bacteria. Bacillus brevis, to sorb MTBE. The process is consisted both batch and column experiment to determine the sorption capacity. And Biofilm is observed by SEM in the column. Finally, it is clear that ground tire represent an attractive and relatively inexpensive sorption medium for a MTBE. The authors can surmise that to determine the economic cost of ground tire utilization, tile cost to sorb a given mass of contaminant by ground tire will have to be compared to currently accepted sorption media. and Bacillus brevis strain was eliminated on MTBE, too. The biobarrier that ground tire with bacteria, has potential for use in the remediation of MTBE-contaminated environments.

  • PDF

Relationship between Moisture Barrier Properties and Sorption Characteristics of Edible Composite Films

  • Ryu, Sou-Youn;Rhim, Jong-Whan;Lee, Won-Jong;Yoon, Jung-Ro;Kim, Suk-Shin
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Moisture sorption characteristics of edible composite films were determined and compared against moisture barrier properties. Edible composite films were Z1 (zein film with polyethylene glycol(PEG) and glycerol), Z2 (zein film with oleic acid), ZA1 (zein-coated high amylose corn starch film with PEG and glycerol), and ZA2 (zein-coated high amylose corn starch film with oleic acid). Z2 film showed the lowest equilibrium moisture content (EMC), monolayer value ($W_m$), water vapor permeability (WVP), and water solubility (WS). Surface structure of Z2 was relatively denser and finer than that of other edible films. GAB $W_m$ and C values decreased, while K values increased with increasing temperature. Correlation coefficients of WS:EMC and WVP:EMC at Aw 0.75 were higher than those of WS: $W_m$ and WVP: $W_m$, respectively. EMC values at Aw 0.75 appeared useful for evaluating or predicting moisture barrier properties of edible films.

Sorption and Leaching Studies of Fenitrothion and Tebuconazole in Granular Activated Carbon and Charcoal (Fenitrothion과 Tebuconazole의 입상 활성탄 및 차콜에 의한 흡착과 용탈에 관한 연구)

  • Lee, Dong-Ik;Chun, So-Ul;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.47-55
    • /
    • 2006
  • Golf course community has always been concerned about water quality regarding to pesticide and fertilizer managements. This study conducted to investigate sorption and leaching behavior of common pesticides used for golf course in granular activated carbon I (GAC 1), granular activated carbon II(GAC II), and charcoal. We used batch study to investigate the influence of concentrations of Smithion and Folicur and particle sizes of GAC I, GAC II, and charcoal on sorption. Also, column study was used to investigate the leaching effect of Smithion in GAC I and charcoal. We found that sorption of Smithion and Folicur were higher in less $45{\mu}m$ of particle size for GAC I, GAC II, and charcoal compared to $1.7{\sim}2.0mm$ size, and the sorption of Smithion and Folicur in less $45{\mu}m$ of particle size ranged from 90 to 99%. In the column study, there was no difference in leaching effect between GAC I and charcoal. Overall, we found that charcoal might offer a cost effective adsorbent as a pesticides in leachate.

The Effect of Disintegrants on the Properties of Salicylamide Tablets (수종의 붕해제가 살리실아미드정제의 제제특성에 미치는 영향)

  • Hwang, Sung-Joo;Rhee, Gye-Ju;Jee, Ung-Kil;Kwak, Hyo-Sung;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Six common tablet disintegrants (corn starch, Avicel PH102, calcium carboxymethylcellulose, Primojel, Kollidon CL and Ac-Di-Sol) were used at the concentration of 0, 2, 4 and 6% (w/w) in salicylamide tablets made with wet granulation method. Certain physical parameters of the disintegrants (moisture sorption, hydration capacity and bulk density) were determined to evaluate their relative efficiency. The disintegration time and dissolution rate of the tablets were correlated well with the ranks of initial rate of moisture sorption for each disintegrant as follows; Ac-Di-Sol, Kollidon CL, primojel, calcium CMC, corn starch and Avicel PH102. The initial rate of moisture sorption was important for the disintegration capacity as well as hydration capacity. The effect of storage at different temperatures and relative humidity upon the tablets containing various disintegrants was evaluated in terms of tablet hardness and disintegration time. Storage at high temperature reduced the hardness substantially and retarded the disintegration of the all tablets studied. Especially, the hardness of tablets containing Kollidon CL was significantly reduced. Although the tablet hardness was decreased and the disintegration time was increased under a moderate humid condition, both of them were decreased under the severely high humid condition of 80 or 90% RH, which was due to the breakrupture of tablet matrix bonds by the excessive uptake of moisture. Therefore, the stability caused by moisture sorption should be considered, when disintegrants having high moisture sorption such as Kollidon CL, Ac-Di-Sol and Primojel were employed in the tablets containing water-labile or hygroscopic drugs.

  • PDF

Molecular Diffusion of Water in Paper (IV) - Mathematical model and fiber-phase moisture diffusivities for unsteady-state moisture diffusion through paper substrates - (종이내 수분확산 (제4보) - 종이의 비정상상태 수분확산 모델과 섬유상 수분확산 계수 -)

  • 윤성훈;박종문;이병철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • An unsteady-state moisture diffusion through cellulosic fibers in paper was characterized from the moisture sorption experiment and the mathematical modeling. The sorption experiment was conducted by exposing thin dry paper specimens to a constant temperature-humidity environment. Oven dried blotting papers and filter papers were used as test samples and the gains of their weights were constantly monitored and recorded as a function of sorption time. For a mathematical approach, the moisture transport was assumed to be an one-dimensional diffusion in thickness direction through the geometrically symmetric structure of paper. The model was asymptotically simplified with a short-term approximation. It gave us a new insight into the moisture uptake phenomena as a function of square root of sorption time. The fiber-phase moisture diffusivities(FPMD) of paper samples were then determined by correlating the experimental data with the unsteady-state diffusion model obtained. Their values were found to be on the order of magnitude of $10^{-6}-10^{-7}cm^2$/min., which were equivalent to the hypothetical effective diffusion coefficients at the limit of zero porosity. The moisture sorption curve predicted from the model fairly agreed with that obtained from the experiment at some limited initial stages of the moisture uptake process. The FPMD value of paper significantly varied depending upon the current moisture content of paper. The mean FPMD was about 0.7-0.8 times as large as the short-term approximated FPMD.