• Title/Summary/Keyword: Water soluble ion

Search Result 202, Processing Time 0.028 seconds

Preparation and Characterization of Water-Soluble Glass through Melting Process (I) : Dissolution Characteristics, Bactericidal Effects and Cytotoxicity (용융법에 의한 수용성 유리의 제조 및 특성 (I) : 용해 특성, 살균 효과 및 세포 독성)

  • 조종호;이용근;최세영;신철수;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1093-1102
    • /
    • 1995
  • Water-soluble phosphate glasses containing Ag or Cu ion were prepared through melting process. Then the powdered glass samples were dissolved in D.I. water at room temperature with changing the dissolution time. In terms with the glass composition, dissolution characteristics, bactericidal effects and cytotoxicities were investigated. Dissolved amounts increased uniformly with dissolution time, and the dissolution rate was higher for ternary glass than for binary glass and with less metal oxide amount. And the dissolution rate of the glass with Ag ion was higher than that with Cu ion, and the bactericidal effect of the glass with Ag ion was also greater. Solution with more than 25 ppm of Ag was observed to have strong cytotoxicity to L929, and solutions of lower Ag concentration or with Cu seemed to have little cytotoxicity.

  • PDF

Daily Concentration Measurements of Water-soluble Inorganic Ions in the Atmospheric Fine Particulate for Respiratory Deposition Region (호흡기 침착부위에 따른 미세먼지 중 수용성 이온성분의 일별 농도 측정)

  • Kang, Gong-Unn;Lee, Sang-Bok
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.387-397
    • /
    • 2005
  • In oder to understand the deposition possibility of water-soluble inorganic ions in the atmospheric fine particulates for the human respiratory tract, the mass size distribution of ion species was measured using an Anderson sampler in the Iksan during fall, 2004. Samples were analyzed for major water-soluble ions using Dionex DX-100 ion chromatograph. The size distribution of water-soluble inorganic ions in the atmospheric particulates appeared bimodal distribution, which were divided around $1-2{\mu}m$ into two groups. Mass site distribution of total ion in the coarse mode was found to be almost similar level during the sampling period, but fluctuations of mass size distribution in the fine mode were observed. Considering the mass size distribution of total ion concentrations for the respiratory deposition region, it was found that about 77.1% of total tons could be deposited in the alveolar region, and which dominated the daily variation of total ion concentrations. The concentration of total ions, which could be deposited in both the head region and the tracheobronchial region, was $3.95{\mu}g/m^3$, whereas that in the alveolar rerion was $13.28{\mu}g/m^3$. Dominant ions which could be deposited in the alveolar region were ${NO_3}{^-},\;{SO_4}^{2-}\;and\;{NH_4{^+}$, accounting for about 40%, 27% and 22% of the total ions, respectively. Although $K^+$ was approximately 3% of total ions, it was shown that most of this could be deposited in the alveolar region due to its high fraction of small size distribution originated from anthropogenic source of biomass burning. The presence of these ions in the fine mode may be of public health significance as they are very biologically harmful to health and have a high probability of being deposited in human lung tissue.

Weekday/weekend Chemical Characteristics of Water-Soluble Components of PM10 at Busan in Springtime (부산지역 봄철 주중/주말의 PM10 중 이온성분의 화학적 조성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.785-792
    • /
    • 2015
  • This study investigates weekday/weekend characteristics of $PM_{10}$ concentration and chemical composition of water-soluble ions in Busan in the spring of 2013. Contribution rate of water-soluble ions to PM10 concentration in weekday/weekend were 41.5% and 38.5%, respectively. Contribution rate of SO_4{^{2-}}$ to total ion mass in weekday/weekend were 30.4% and 33.8%, respectively. Contribution rate of total inorganic water-soluble ions in PM10 in weekday/weekend were 42.2% and 39.1% (mean 41.4%), respectively. $[NO_3{^-}/SO_4{^{2-}}]$ ratio in weekday/weekend were 1.01 and 0.97(mean 0.99), respectively, which indicated that weekday ratio was higher. Contribution rate of sea salts and $Cl^-/Na^+$ ratio in PM10 in weekday/weekend were 8.1% and 7.6%, 0.37% and 0.41%, respectively. This research will help understand chemical composition of water-soluble ions during the weekday/weekend and will be able to measure the contribution level of artificial anthropogenic source on urban air.

Seasonal Deposition Characteristics of Water-soluble Ion Species in Ambient Aerosol in Iksan City (익산지역 대기에어로졸 중 수용성 이온성분의 계절별 침적 특성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.56-70
    • /
    • 2013
  • Objectives: This paper aims to investigate the seasonal deposition characteristics of water-soluble ion species by comparing the deposition amount of two samples taken according to different sampling methods of deposition for ambient aerosol such as gases and particulate matters. Methods: Deposition samples were collected using two deposition gauges in the downtown area of Iksan City over approximately two weeks of each season in 2004. The type of deposition gauges consisted of two different sampling methods known as dry gauge and a wet gauge. The dry gauge was empty and used a dry PE bottle with an inlet diameter of 9.6 cm. Before the beginning of each deposition sampling, a volume of 30-50 ml distilled ionized water was added to the wet gauge to wet the bottom during the sampling period. Deposition samples were measured twice per day and analyzed for inorganic water-soluble ion species using ion chromatography. Results: The daily deposition amounts of all measured ions in the dry gauge and the wet gauge showed a significant increase when precipitation occurred, having no difference of deposition amount between in the wet gauge and in the dry gauge. By excluding two samples from rainy days during the sampling period, the mean daily deposition of all ions in dry gauge and wet gauge were $6.58mg/m^2/day$ and $18.16mg/m^2/day$, respectively. The mean deposition amounts of each ion species were higher in the wet gauge than in the dry gauge because of the surface difference of the sampling gauge, especially for $NH_4{^+}$ and ${SO_4}^{2-}$. The mean deposition amounts of $NH_4{^+}$ and ${SO_4}^{2-}$ in the wet gauge were found to be about 15.4 times and 5.2 times higher than that in dry gauge, with a pronounced difference between spring and summer, while the remaining ion species were 1.1-2.0 times higher in the wet gauge than in the dry gauge. Dominant species in the dry gauge were $Ca^{2+}$ and $NO_3{^-}$, accounting for 36.4% and 18.1% of the total ion deposition, whereas those in the wet gauge were $NH_4{^+}$ and ${SO_4}^{2-}$, accounting for 32.5% and 25.0% of the total ion deposition, respectively. Conclusion: The seasonal differences in deposition amounts of water-soluble ion species in ambient aerosol depending on the two types of different sampling methods were identified. This suggests that the removal of ambient aerosol is strongly influenced by the weather conditions of each season as well as the condition of earth's surface, such as dry ground and water.

Stability Evaluation on Measuring Water-soluble Chloride Anions from Iron Artifacts (철제유물의 수용성 염소이온 측정방법에 대한 안정성 평가)

  • Lee, Jae-Sung;Park, Hyung-Ho;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • The most ideal method to measure the water-soluble $Cl^-$ ion eluted from iron artifacts is conducting the analysis on desalting solution by Ion Chromatography. But most institutes related to cultural heritages use Cl meter by reason of lack of budget and experts. This study evaluated reliability and stability between Cl meter and Ion Chromatography by doing cross-validation with results from two methods to detect $Cl^-$ ion of desalting solution. From D.I water, extremely small quantities of $Cl^-$ ion was detected by the influence of remaining water-soluble $Cl^-$ ion at the electrode of Cl meter and water-soluble $Cl^-$ which remains in Sodium sesquicarbonate, components of reagent was detected as well. The first desalting solution had the most $Cl^-$ ions, $Cl^-$ ion slightly decreased from the second to the fourth desalting solution and tend to decrease again at the stage of dealkalified in D.I water. Each Cl meter has the standard deviation according to the measured numbers and the higher concentration of $Cl^-$ ion the desalting solution has, the wider the deviation is. But when the concentration of $Cl^-$ ion is low, it was stable to use Cl meter to detect the concentration of $Cl^-$ ion from iron artifacts because there is the small deviation, It is thought that conductivity meter method is not suitable for measuring $Cl^-$ ion, because the electrical conductivity of alkaline solution is too high to measure $Cl^-$ ion.

Preparation and Characterization of Water-Soluble Glass Through Melting Process(II) : Dissolution Characteristics, Bactericidal Effects and Cytotoxicity (용융법에 의한 수용성 유리의 제조 및 특성(II) : 용해 특성, 살균 효과 및 세포 독성)

  • 오승한;조종호;최세영;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.13-22
    • /
    • 1997
  • Water-soluble phosphate glasses containing Ag and Cu ion were prepared through melting process. Dis-solution characteristics, bactericidal effect and cytotoxicity were investigated with composition and time in D. I. water using the powdered sample. Surface change were observed with increasing dissolution time us-ing the bulk specimen. Dissolution amount was maximum at the molar Ag:Cu ratio of 1 and increased with increasing time. The behavior of dissolution was total dissolution from the early stage. But no new layer was observed at the glass surface during dissolution. The bactericidal effect for pseudomonas sp, e. coli, sta-phylococcus aureus, and salmonella increased with increasing dissolution amount and therefore great bac-tericidal effect appeared. The result of cytotoxicity experiment to L929 showed that solution with more than 10 ppm of Ag ion had strong cytotoxicity.

  • PDF

Binding of the Hexavalent Chromium Ions in the Process of Cement Hydration (시멘트 수화에 따른 6가 크롬의 고정화 특성)

  • Jung, Min-Sun;Hwang, Jun-Pil;Hong, Sung-In;Ann, Ki-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • The hexavalent chromium (Cr(VI)) is well known as a hazardous ion, presumably inducing dermatic diseases and if serious cancer. The present study concerns the binding capacity of Cr(VI) ions in the cement powder and matrix for a quantitative technique of Cr(VI) ions in cement to influence human health. Both the water-soluble and acid-soluble Cr(VI) ions present in 3 types of ordinary Portland cement (OPC), pulverised fuel ash (PFA), ground granulated blast furnace slag (GGBS), and silica fume (SF) were measured using the spectrophotometer. As a result, it was found that the concentration of water-soluble Cr(VI) ion in cement ranged from 10.5 to 18.9mg/kg-cement, and in the additional materials a very low value of Cr(VI) ion was measured. Acid-soluble Cr(VI) ion was even higher than water-soluble Cr(VI) ion, ranging from 172.4 to 318.2mg/kg-cement. Nevertheless, the concentration of acid-soluble Cr(VI) ion is not proportional to addition of acid. It depends rather the variable pH of solvent involving cement paste. As enough cement hydration occurs, the binding capacity of Cr(VI) ion increases, inhibiting this ions from leaching out in the presence of hydration products such as ettringite or tri-calcium aluminate which bind Cr(VI) ion by ion-exchange.

A Study on the Evaluation of the Water-soluble Chloride Content and Free-chloride Content in Blast Furnace Slag Cement Pastes (고로 슬래그 시멘트 페이스트 내 자유염화물량과 물가용성 염화물량 평가에 관한 연구)

  • Jo, Young-Kug;So, Seung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.95-101
    • /
    • 2004
  • The purpose of this paper is to compare free-chloride content with water-soluble chloride in blast furnace cement(BSC) paste. The content of free-chloride in cement paste measured by pore solution analysis and water-soluble chloride measured by ASTM. The result of this study are as follows: 1. The concentration of chloride ion in pore solution of BSC-solidified matrix is almost as low as 43-71% compared to that of OPC-solidified matrix containing the same chloride content in cement paste. 2. The binding capacity of specimens, OPC Pl-P5, are 93.5-77%, but the binding capacity of specimens, BSC Pl-P5 are 97.1-86.1%, which is to be as high as 2-9.1% compared to OPC containing the same chloride content. 3. In terms of water-soluble chloride content in BSC paste are 15-31.7 percent of chloride addition but free-chloride content in pore solution are 2.9-13.9 percent of chloride addition. The free-chloride content in pore solution is 19.3-43.8 percent lower for the water-soluble chloride content in cement paste.

Study for the Determination of chloride ion in hardened concrete using Potentiometic Methods (전위차법을 이용한 경화 콘크리트 및 콘크리트재료의 염화물 측정기술 개발)

  • Lee, Kyoung-Moon;Yoon, In-Jun;Seo, In-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.578-581
    • /
    • 2006
  • This study was performed to develop acid-soluble extraction solution and water-soluble extraction solution for hardened concrete. By use of this potentiometric method one can determinate chloride ion concentration in hardened concrete without pre-treatment and it can be used on-site.

  • PDF

Characteristics of Metallic and Ionic Concentration in Fine Particle during Haze Days in Busan (부산 지역 연무 발생일의 미세먼지 중 금속과 이온 성분 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.767-778
    • /
    • 2017
  • This research investigates the characteristics of metallic and ionic elements in $PM_{10}$ and $PM_{2.5}$ on haze day and non-haze day in Busan. $PM_{10}$ concentration on haze day and non-haze day were 85.75 and $33.52{\mu}g/m^3$, respectively, and $PM_{2.5}$ on haze day and non-haze day were 68.24 and $23.86{\mu}g/m^3$, respectively. Contribution rate of total inorganic water-soluble ion to $PM_{10}$ mass on haze day and non haze day were 58.2% and 61.5%, respectively, and contribution rate of total water-soluble ion to $PM_{2.5}$ mass on haze day and non haze day were 58.7% and 64.7%, respectively. Also, contribution rate of secondary ion to $PM_{10}$ mass on haze day and non haze day were 52.1% and 47.5%, respectively, and contribution rate of secondary ion to $PM_{2.5}$ mass on haze day and non haze day were 54.4% and 53.6%, respectively. AC (anion equivalents)/CE (cation equivalents) ratio of $PM_{10}$ mass on haze day and non haze day were 1.09 and 1.0, respectively, and AC/CE ratios of $PM_{2.5}$ mass on haze day and non haze day were 1.12 and 1.04, respectively. Also, SOR (Sulfur Oxidation Ratio) of $PM_{10}$ mass on haze day and non haze day were 0.32 and 0.17, respectively, and SOR of $PM_{2.5}$ on haze day and non haze day were 0.30 and 0.15, respectively. Lastly, NOR (Nitrogen Oxidation Ratio) of $PM_{10}$ on haze day and non haze day were 0.17 and 0.08, respectively, and NOR of $PM_{2.5}$ on haze day and non haze day were 0.13 and 0.06, respectively.