• Title/Summary/Keyword: Water quality monitoring system

Search Result 367, Processing Time 0.027 seconds

Development of Integrated Management System of Stormwater Retention and Treatment in Waterside Land for Urban Stream Environment (도시 하천 환경 관리를 위한 제외지 초기 강우 처리 및 저류 시설 종합 관리 시스템 개발)

  • Yin, Zhenhao;Koo, Youngmin;Lee, Eunhyoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • Increase of delivery effect of pollutant loads and surface runoff due to urbanization of catchment area results in serious environmental problems in receiving urban streams. This study aims to develop integrated stormwater management system to assist efficient urban stream flow and water quality control using information from the Storm Water Management Model (SWMM), real time water level and quality monitoring system and remote or automatic treatment facility control system. Based on field observations in the study site, most of the pollutant loads are flushed within 4 hours of the rainfall event. SWMM simulation results indicates that the treatment system can store up to 6 mm of cumulative rainfall in the study catchment area, and this means any type of normal rainfall situation can be treated using the system. Relationship between rainfall amount and fill time were developed for various rainfall duration for operation of stormwater treatment system in this study. This study can further provide inputs of river water quality model and thus can effectively assist integrated water resources management in urban catchment and streams.

Improvement of tap water corrosivity by lime and carbon dioxide (액상소석회와 이산화탄소를 이용한 수돗물 부식성 개선)

  • Kim, Jinkeun;Lee, Junghoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.725-733
    • /
    • 2014
  • 16 water treatment plants(WTPs) in Jeju province were investigated to evaluate the corrosivity of tap water. In addition, the impacts of lime and carbon dioxide on LI changes at ES WTP were analyzed. The average of LI in Jeju tap was -1.78 which was similar to that of in-land multi-regional WTPs. The recommended process to improve LI of ES WTP which has high corrosivity(i.e., LI = -2.61) was to combine lime and carbon dioxide with the dosages of 20 mg/L and 5 mg/L respectively to meet LI of -1.0 ~ 0. pH was confirmed to be a major water quality parameter that determined LI based on the correlation results among LI and water quality parameters. Precaution on turbidity increase by lime addition should given to minimize particle breakthrough in the distribution system. Turbidity increase can be controlled by the addition of lime prior to filters.

Prediction of high turbidity in rivers using LSTM algorithm (LSTM 모형을 이용한 하천 고탁수 발생 예측 연구)

  • Park, Jungsu;Lee, Hyunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.35-43
    • /
    • 2020
  • Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.

A Study on the Water Quality Relationship between Continuous Dam Discharge and Downstream in North Han River (북한강에 연속된 댐 구간 방류수와 하류 하천간 수질 관계 분석 연구)

  • Kim, Ji Won;Lee, Hye Won;Lee, Yong Seok;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • North Han River is a very unique type of water system, where Hwacheon, Chuncheon, Soyanggang, Euiam and Cheongpyeong Dams are located consecutively. These dams are operated differently in the amount of discharge and release schedule according to their structure and purpose of use. They have different water quality characteristics depending on external pollutant inflow and internal mixing condition. Therefore, this study investigated the relationship between the upper dam and down stream river with respect to water quality indicators, such as water temperature, electrical conductivity, BOD, COD, TN and TP of the North Han River. The similarities and correlations representing the relationship were analyzed by Pearson's correlation r and t-test. The data was taken from the Ministry of Environment's water quality monitoring from 1999 to 2018. The results show that water temperature and electrical conductivity of the dam and river are similar and correlated. However, it turned out that there was no similarities and correlations in BOD, COD, TN and TP that are significantly affected by subaqueous reaction mechanism. The results of this study present the impact of the dam on the water quality of North Han River, which can be used as useful data for management of water quality.

Discovery of and Recovery from Failure in a Costal Marine USN Service

  • Ceong, Hee-Taek;Kim, Hae-Jin;Park, Jeong-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • In a marine ubiquitous sensor network (USN) system using expensive sensors in the harsh ocean environment, it is very important to discover failures and devise recovery techniques to deal with such failures. Therefore, in order to perform failure modeling, this study analyzes the USN-based real-time water quality monitoring service of the Gaduri Aqua Farms at Songdo Island of Yeosu, South Korea and devises methods of discovery and recovery of failure by classifying the types of failure into system element failure, communication failure, and data failure. In particular, to solve problems from the perspective of data, this study defines data integrity and data consistency for use in identifying data failure. This study, by identifying the exact type of failure through analysis of the cause of failure, proposes criteria for performing relevant recovery. In addition, the experiments have been made to suggest the duration as to how long the data should be stored in the gateway when such a data failure occurs.

Developing an On-Line Monitoring System for a Forest Hydrological Environment - Development of Hardware - (산림수문환경(山林水文環境) 모니터링을 위(爲)한 원거리(遠距離) 자동관측(自動觀測)시스템의 개발(開發) - 하드웨어를 중심(中心)으로 -)

  • Lee, Heon Ho;Suk, Soo Il
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.405-413
    • /
    • 2000
  • This study was conducted to develop an on-line monitoring system for a forest hydrological environment and its meteorological condition, such as temperature, wind direction and speed, rainfall and water level on V-notch, electrical conductivity(EC), potential of hydrogen(PH) by the motor drive sensor unit and measurement with a single-chip microprocessor as controller. These results are summarized as follows ; 1. The monitoring system consists of a signal process unit, motor drive sensor unit, radio modem unit and power supply. 2. The motor drive sensor unit protects the sensor from swift current or freezing and can constantly maintain fixed water level during measurements. 3. This monitoring system can transfer the data by radio modem. Additionally, this system can monitor hydrological conditions in real time. 4. The hardware was made of several modules with an independent CPU. They can be mounted, removed, repaired and added to. Their function can be changed and expanded. 5. These are the result of an accuracy test, the values of temperature, EC and pH measured within an error range of ${\pm}0.2^{\circ}C$, ${\pm}1{\mu}S$ and ${\pm}0.1pH$ respectively. 6. This monitoring system proved to be able to measure various factors for a forest hydrological environment in various experimental stations.

  • PDF

Analysis of Water Quality Fluctuations in Upstream Namhan River Watershed Using Long-term Statistical Analysis (통계적 경향 분석을 통한 남한강 상류 수계 수질 변동 해석)

  • Byeon, Sang-Don;Noh, Yeon-Jung;Lim, Kyeong-Jae;Kim, Jong-Gun;Kim, Dong-Jin;Hong, Eun-Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.15-26
    • /
    • 2020
  • There are fifteen non-point pollution management areas in Korea and three of them (Doam lake, Daegi district and Golji-cheon) are located in the upstream of the Namhan river watershed. Many efforts to reduce non-point sources (NPS) pollution have been conducted, however, water quality pollution in the watershed is still serious. To solve these problems, it is a priority to grasp water quality using statistical techniques. In this study, a trend analysis was conducted to evaluate the effect of NPS management in the watershed. The long-term trends from 1996 to 2018 of water quality properties were analyzed using data collected from the water environment information system. Seventeen monitoring stations were selected along the main stream in Namhan river basin. Monthly water quality properties (BOD, COD, TN, TP, TN/TP ratio, Conductivity, SS and Chlorophyll-a) were collected and analyzed by Mann-Kendall test and LOWESS. The results showed that the Conductivity tended to increase in all regions and was the highest level in Jijangcheon. Organic pollution such as BOD and COD tended to increase in the Jungseon area. SS did not show a large tendency, but it showed high concentration in the Doam watershed. In all regions, 40% of water quality properties showed a tendency to 'UP', 15% of water quality properties tended to 'DOWN', and 46% indicated no tendency. In order to determine the cause of this, additional research and measures for improvement are necessary. This study will be used for the establishment of water quality policy in the future.

Performance Appraisal of Total Maximum Daily Loads: Performance on Development/Reduction Plan and Water Quality Status of Unit Watershed (수질오염총량관리제의 성과평가: 개발/삭감계획의 이행실적 및 단위유역의 수질 현황)

  • Park, Jae Hong;Park, Jun Dae;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.481-493
    • /
    • 2009
  • This study was conducted to performance appraisal of Total Maximum Daily Loads (TMDLs), especially in terms of performance on development & reduction plan and water quality status of unit watershed. Because load allocations for pollution sources were predicted redundantly by uncertainty of prediction, TMDLs master plan has been frequently changed to acquire load allocation for local development. Therefore, It need to be developed more resonable prediction techniques of water pollution sources to preventing the frequent change. It is suggested that the reduction amount have to be distributed properly during the planning period. In other words, it has not to be concentrated on the specific year (especially final year of the planning period). The reason why, if the reduction amount concentrate on the final year of the planning period, allotment loading amount could not be achieved in some cases (e.g., insufficiency of budget, extension of construction duration). If the development plan was developed including uncertain developments, it is necessary to be developed reduction plan considered with them. However, some of the plans in the reduction plan could not be accomplished in some case. Because, it is not considered financial abilities of local governments. Consequently, development plan must be accomplished to avoid uncertain developments, and to consider financial assistance to support the implementation of effective plan. Water quality has been improved in many unit watersheds due to the TMDLs, especially in geum river and yeongsang/seomjin river.

A Study on the Implementation of Intelligent Diagnosis System for Motor Pump (모터펌프의 지능형 진단시스템 구현에 관한 연구)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.87-91
    • /
    • 2019
  • The diagnosis of the failure for the existing electrical facilities was based on regular preventive maintenance, but this preventive maintenance was limited in preventing a lot of cost loss and sudden system failure. To overcome these shortcomings, fault prediction and diagnostic techniques are critical to increasing system reliability by monitoring electrical installations in real time and detecting abnormal conditions in the facility early. As the performance and quality deterioration problem occurs frequently due to the increase in the number of users of the motor pump, the purpose is to build an intelligent control system that can control the motor pump to maximize the performance and to improve the quality and reliability. To this end, a vibration sensor, temperature sensor, pressure sensor, and low water level sensor are used to detect vibrations, temperatures, pressures, and low water levels that can occur in the motor pump, and to build a system that can identify and diagnose information to users in real time.

Predicting the likelihood of impaired stream segments using Geographic Information System on Abandoned Mine Land in Gangwon Province

  • Lee, Ju-Young;Yang, Jung-Suk;Choi, Jae-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1081-1083
    • /
    • 2007
  • The study in river basin has been performed for the identify water quality impaired stream segments, to create a priority ranking of those segments, and to calculate the heavy metal ion distribution for each impaired segment based on chemical and physical water quality standards. Two methods for modeling the potential area-specific heavy metal distribution are pursued in this study. First, a novel approach focuses on distance. Heavy metal distribution can be associated with a particular small geographic area. Based on the derived estimates an distribution map can be generated. Second, the approach is used the near watershed by means of kriging interpolation algorithm. These approaches provide an alternative distribution mapping of the area. The exposure estimates from both of these modeling methods are then compared with other environmental monitoring data. A GIS-based model will be used to mimic the hierarchical stream structure and processes found in natural watershed. Specifically, the relationship between landscape variables and reach scale habitat conditions most influential found in the Abandoned mine will be explored.

  • PDF