• 제목/요약/키워드: Water purification technology

검색결과 296건 처리시간 0.025초

천연 조류 제거제를 이용한 정수장 유입 조류 제거 효율 (Effectiveness of elimination inflowing algae in water treatment plant using natural algae remover)

  • 정호영;김영희
    • 상하수도학회지
    • /
    • 제33권4호
    • /
    • pp.311-319
    • /
    • 2019
  • The purpose of this study was to analyze water treatment characteristics, including the efficiency of removing algae from water purification plants, by installing a demonstration facility for decontamination of algae, including natural algae remover injection equipment, in the water purification plant. Jar-test showed that the optimum injection of natural decontaminant was 20 mg/L. Of the water contaminant treatment efficiency of the intake and water purification plants, Chl-a averaged 74.0% elimination efficiency from $5.0mg/m^3$ to $1.3mg/m^3$ and the maximum treatment efficiency was 91.5% removal efficiency when the inflow concentration of Chl-a was $11.8mg/m^3$. In addition, 51.2% and 47.1% of the taste and odor indicator items, geosmin and 2-MIB, resulted from the overgrowth and decaying of algae, respectively, to identify toxic substances and odor reduction effects. In addition, elimination efficiencies of SS and Turbidity materials were higher than 70.0%. In the injection of natural algae remover, no effects such as sudden changes in water quality due to secondary reactions were found, and appropriate levels were maintained under water treatment conditions.

Environmental Management by Using Weedy Plants

  • Oki, Yoko
    • 한국잡초학회지
    • /
    • 제18권2호
    • /
    • pp.95-105
    • /
    • 1998
  • The positive functions of aquatic and terrestrial weedy plants were reviewed in terms of water purification, soil erosion prevention, salt-affected soil utilization, etc.. Introduced were several examples to utilize weedy plants for environment management by exploiting their positive functions.

  • PDF

단위공정별 기초실험을 통한 다기능 융복합부도의 설계·운전인자 도출 (Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes)

  • 임현만;장여주;정진홍;윤영한;박재로;김원재
    • 상하수도학회지
    • /
    • 제32권6호
    • /
    • pp.487-497
    • /
    • 2018
  • Water quality improvement processes for stagnant area consist mainly of technologies applying vegetation and artificial water circulation, and these existing technologies have some limits to handle pollution loads effectively. To improve the purification efficiency, eco-friendly technologies should be developed that can reinforce self-purification functions. In this study, a multi-functional floating island combined with physical chemical biological functions ((1) flotation and oxidization using microbubbles, (2) vegetation purification and (3) bio-filtration with improved adsorption capacity) has been developed and basic experiments were performed to determine the optimal combination conditions for each unit process. It has been shown that it is desirable to operate the microbubble unit process under conditions greater than $3.5kgf/cm^2$. In vegetation purification unit process, Yellow Iris (Iris pseudacorus) was suggested to be suitable considering water quality, landscape improvement and maintenance. When granular red-mud was applied to the bio-filtration unit process, it was found that T-P removal efficiency was good and its value was also stable for various linear velocity conditions. The appropriate thickness of filter media was suggested between 30 and 45 cm. In this study, the optimal design and operating parameters of the multi-functional floating island have been presented based on the results of the basic experiments of each unit process.

Fabrication and Characterization of Onggi Filter for Appropriate Water Treatment Technology

  • Park, Joon-Hong;Kim, Jin-Ho;Cho, Woo-Seok;Han, Kyu-Sung;Hwang, Kwang-Taek
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.114-120
    • /
    • 2017
  • In underdeveloped countries, many people suffer from water shortage due to the absence of water supply service. Although water purifiers have provided support in such situations, it is not easy to maintain water filters without a continuous supply of consumable filters. To obtain a sustainable drinking water source, appropriate technology of water treatment is necessary. Herein, a low cost water purification system was developed using natural raw materials. A non-electric water treatment system was developed using filtration through an Onggi filter, which is a type of Korean traditional earthenware with a microporous surface. The porosity and flux of the prepared Onggi filter were 29.06% and 31.63 LMH, respectively. After purification of water with total dissolved solids of 10.4 mg/L and turbidity of 100 NTU, the total dissolved solids and turbidity of the water treated using the Onggi filter decreased by 12% and 99.8%, respectively.

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.

조석분류를 이용한 연안해역의 수질정화에 관한 수치적 평가 (Numerical Assessment for Coastal Water Purification Utilizing a Tidal Jet System)

  • 박종천
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.58-63
    • /
    • 2006
  • When the costal zone surrounded by a breakwater has a narrow vertical opening, currents in the vicinity of a narrow entrance can result in a jet flow, coinciding with the tide. Such a Tidal-Jet Generator(TJG) can change the water mass distribution and transport processes in the domain of influence of the jet. Also, it can decrease the residual time of them. In the present study, the water purification utilizing tidal jets in the coastal zone over constant bathymetry are estimated numerically, using a finite-difference numerical scheme, named the NS-MAC-TIDE method, which isbased on the fully 3D Navier-stokes(NS) equations. The shear velocity near the inlet of the TJG are predicted from the flow field simulation, and are assessed qualitatively with the development of scouring or sediment that is caused by the change of diffusion or sweeping flowup from the seabed of sediment particles. Finally, through solving a transport equation of concentration, the residual time related on mass transport processes and the flushing mechanism for water purification are investigated.

저류지 생태공원 설계모형 개발에 관한 연구 (A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities)

  • 변우일
    • 한국환경복원기술학회지
    • /
    • 제9권3호
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.233-239
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water. The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg O$_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg O$_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

  • PDF

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • 한국항해항만학회지
    • /
    • 제28권2호
    • /
    • pp.155-159
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water, The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg$O_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg $O_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.