• Title/Summary/Keyword: Water purification processes

Search Result 63, Processing Time 0.021 seconds

CATALYTIC MEMBRANE REACTOR FOR DEYDROGENATION OF WATER VIA GAS-SHIFT

  • Tosti, Silvano;Castelli, Stefano;Violante, Vittorio
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.43-47
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen purification and recovery in th fusion reactor fuel cycle. The development of techniques for coating microporous ceramic tubes with Pd and Pd/Ag layers is described: composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20${\mu}{\textrm}{m}$) and rolling of thin metal sheet (Pd and Pd/ Ag membranes of 50-70 ${\mu}{\textrm}{m}$). Experimental results on electroless membranes showed that the metallic film presented some defects and the membranes had not complete hydrogen selectivity . Then the catalytic membrane reactors with electroless membranes can be applied for some industrial processes that do not require a complete separation of the hydrogen (i.e. in the dehydrogenation of hydrocarbons). The rolled thin Pd/Ag membranes separated the hydrogen from the other gas with a complete selectivity and exhibited a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests confirmed the good performances in terms of durability.

  • PDF

Characteristics of Cyclone and Electric Dust Collection Oil Filters for Selective Removal of Fiber Tenter Air Pollutants (섬유 텐터 대기오염물질의 선택적 제거를 위한 싸이클론 및 전기 집진 오일필터의 특성)

  • Jin Ho Jung;Seung Hwan Ryu;Soon Duk Kwon;Yoon Hyun Cho
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.256-273
    • /
    • 2023
  • Among the dyeing industries, the tenter process is a process that improves the quality of fibers by drying and ironing (heat treatment) dyed fabrics, and drugs such as water repellents, antistatic agents, and fiber softeners are mainly used in these tenter processes. These drugs are vaporized in the process of treatment by high temperatures (180 ~ 230℃), and are observed in a complex form such as white smoke, oil mist, and fine dust, causing odor. To treat the complex exhaust gas at the rear end of the tenter facility, most companies operate by installing a wet scrubber and an adsorption tower alone or in parallel, but there are many problems. In particular, the insoluble oil mist at the rear end of the tenter has significantly low processing efficiency in the cleaning dust collection facility, and there is a problem in the facility by adsorption due to the occlusion phenomenon caused by the oil mist. In addition, the odor gas at the rear end of the tenter contains a lot of aldehydes, and in order to improve these various problems, a complex exhaust purification device using cyclone and electric support collector was developed. This study examined the applicability of economical and efficient technology by removing complex air pollution at the rear end of the tenter and applying improved technology than the existing technology.

Process gas purification using cyclone recirculation and cooling process (싸이클론 재순환, 냉각공정을 이용한 공정가스 정제 연구)

  • Kim, Ju-Hoe;Jo, Woo-Jin;Choi, Young-Tae;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2018
  • Renewable energy has been of interests in the area of modern alternative fuels. Biogas is produced in waste landfill sites through anaerobic digestion processes, including hydrolysis, acidogenesis, organic acid fermentation (acetogenesis), and methane fermentation (methanogenesis). High contents of fine dust and moisture limited its utilization for direct combustion, town gas and vehicle fuel. Thus, this study proposed a new design for a cooling device using a centrifugal cyclone for simultaneous removal of fine dust and moisture as a pretreatment in the purification processes. A heat exchanger and an ID fan, which are installed inside and outside of the cyclone, in order to cool the humid gas below the freezing point and form a foggy mist. Such an atmosphere enhanced to capture fine dust as recirculating the cold mist flow. The water removal rate was 80.8% at a relative humidity of 95%, and the particle removal efficiency was 98.3% for $2.5{\mu}m$. Simultaneous removal efficiency was 70.8% and 99.6% for particle and moisture respectively.

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.

Bio-Green' Functional Water Supply Influences Mineral Uptake and Fruit Quality In Tsugaru Apples (‘바이오 그린’ 기능수 처리가 사과 쓰가루 품종의 무기성분 흡수와 과실품질에 미치는 영향)

  • Kim, Wol-Soo;Chung, Soon-Ju
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.71-79
    • /
    • 1997
  • Commercial Bio- Green(B.G.) functional water was manufactured through a series of processes : water - ultra-purification - adding catalysts - energy imprinting fermenting with energized water + zeolite and others + photosynthetic bacteria in fermenter longrightarrow filtering. Control(0), 5 or 10 liters per plant of B.G. functional water were supplied to the orchard soil under canopy of 10 year- old ‘Tsugaru’/M26 apple trees on March 20, May 20 and June 20, 1995, respectively. pH and content of Ca and Mg of orchard soil were increased by supply with B.G. functional water. However, P$_2$ $O_{5}$, K, and B contents were not influenced by the treatment. At harvest time soluble solid content of flesh tissue and anthocyanin of fruit skin were increased by the treatment. B.G functional water treatment showed higher root activities, and photosynthesis of leaves than that of control. Also B.G. functional water treatment enhanced Ca content in fruit skin and flesh tissues, whereas not affected N, K, and Mg contents. During storage at 4$^{\circ}C$ cold room, the more volume of B.G. functional water supply showed lower bitter pit symptom. Respiration and ethylene evolution in fruit decreased, while fruit firmness increased by the treatment during storage.

  • PDF

Influence on the Land Use Factors Affecting the Water Quality of Iwonchon Basin (토지이용이 이원천 유역의 하천수질에 미치는 영향)

  • 이호준;방제용;김용옥
    • The Korean Journal of Ecology
    • /
    • v.22 no.5
    • /
    • pp.235-240
    • /
    • 1999
  • Characterization of water quality was performed from March 1993 to March 1998, on the purpose of clarifying the relationships between water quality and land use types. The study sites were two reservoir basins; Kaesim and Jangchan in Iwon-myon, Okchon-gun, Chungcho'ngbukdo Province. The two basins were characterized by cultivated area (Kaesim reservoir) and mountain area (Jangchan reservoir), and divided into eleven small basins, where dynamics of pollutants, and the relationship between water quality and land use types were investigated. BOD, SS and TKN became lower and lower from up-stream to down-stream, except for the small basin G where self-purification limit was exceeded. And water quality of Jangchan reservoir basin was worse because of fish nursery. Area below altitude 200m occupied 56% in Kaesim and 44% in Jangchan reservoir basins. Especially total phosphorous (Y/sub T-P/=0.2023X+0.0991, r=0.54) and total nitrogen increased in small basins where the proportion of cultivated and residential area was higher. The analysis of influences of pollutant discharge on water quality showed that pollution charge was very high in cultivated areas. The concentrations of pollutants were attenuated flowing into watersheds through physical, chemical, biochemical, and biological processes. The pollution level of mountain area was lower than that of cultivated areas.

  • PDF

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

Novel analysis procedure for red ginseng polysaccharides by matrix-assisted laser desorption/ionization time-of-flight/time-offlight mass spectrometry

  • Jin, Ye Rin;Oh, Myung Jin;Yuk, Heung Joo;An, Hyun Joo;Kim, Dong Seon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.539-545
    • /
    • 2021
  • Background: Red ginseng polysaccharides (RGPs) have been acknowledged for their outstanding immunomodulation and anti-tumor activities. However, their studies are still limited by the complexity of their structural features, the absence of purification and enrichment methods, and the rarity of the analytical instruments that apply to the analysis of such macromolecules. Thus, this study is an attempt to establish a new mass spectrometry (MS)-based analysis procedure for RGPs. Methods: Saponin pre-excluded powder of RG (RG-SPEP, 10 mg) was treated with 200 µL of distilled water and centrifuged for 5 h at 1000 rpm and 85 ℃. Ethanol-based precipitation and centrifugation were applied to obtain RGPs from the heated extracts. Further, endo-carbohydrase treatments were performed to produce specific saccharide fragments. Solid-phase extraction (SPE) processes were implemented to purify and enrich the enzyme-treated RGPs, while matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS was employed for the partial structural analysis of the obtained RGPs. Results: Utilizing cellulase, porous graphitized carbon (PGC), hydrophilic interaction chromatography (HILIC), and MALDI-TOF/TOF MS, the neutral and acidic RGPs were qualitatively analyzed. Hexn and Hexn-18 (cellulose analogs) were determined to be novel neutral RGPs. Additionally, the [Unknown + Hexn] species were also determined as new acidic RGPs. Furthermore, HexAn (H) was determined as another form of the acidic RGPs. Conclusion: Compared to the previous methods of analysis, these unprecedented applications of HILIC-SPE and MALDI-TOF/TOF MS to analyze RGPs proved to be fairly effective for fractionating and detecting neutral and acidic components. This new procedure exhibits great potential as a specific tool for searching and determining various polysaccharides in many herbal medicines.

$\small{D}$-Lactic Acid Production by Sporolactobacillus inulinus Y2-8 Immobilized in Fibrous Bed Bioreactor Using Corn Flour Hydrolyzate

  • Zhao, Ting;Liu, Dong;Ren, Hengfei;Shi, Xinchi;Zhao, Nan;Chen, Yong;Ying, Hanjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1664-1672
    • /
    • 2014
  • In this study, a fibrous bed bioreactor (FBB) was used for $\small{D}$-lactic acid ($\small{D}$-LA) production by Sporolactobacillus inulinus Y2-8. Corn flour hydrolyzed with ${\alpha}$-amylase and saccharifying enzyme was used as a cost-efficient and nutrient-rich substrate for $\small{D}$-LA production. A maximal starch conversion rate of 93.78% was obtained. The optimum pH for $\small{D}$-LA production was determined to be 6.5. Ammonia water was determined to be an ideal neutralizing agent, which improved the $\small{D}$-LA production and purification processes. Batch fermentation and fed-batch fermentation, with both free cells and immobilized cells, were compared to highlight the advantages of FBB fermentation. In batch mode, the $\small{D}$-LA production rate of FBB fermentation was 1.62 g/l/h, which was 37.29% higher than that of free-cell fermentation, and the $\small{D}$-LA optical purities of the two fermentation methods were above 99.00%. In fe$\small{D}$-batch mode, the maximum $\small{D}$-LA concentration attained by FBB fermentation was 218.8 g/l, which was 37.67% higher than that of free-cell fermentation. Repeate$\small{D}$-batch fermentation was performed to determine the long-term performance of the FBB system, and the data indicated that the average $\small{D}$-LA production rate was 1.62 g/l/h and the average yield was 0.98 g/g. Thus, hydrolyzed corn flour fermented by S. inulinus Y2-8 in a FBB may be used for improving $\small{D}$-LA fermentation by using ammonia water as the neutralizing agent.